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Summary  
The research reported in this article was conducted to mainly explore the two common numeric 
prediction techniques, the model tree and the regression tree, when used in conjunction with 
bagging as a wrapper method.  Bagging is used to improve the prediction accuracy of these two 
algorithms, and results are compared with the ones obtained earlier by the k-nearest neighbor 
(KNN) algorithm.  From the conducted experiments, both the bagged regression tree and bagged 
model tree produce better results than not only their corresponding regression tree and model 
tree alone, but also the KNN with optimal value of k equal to 7.  In addition, the bagged model 
tree yields the lowest prediction errors and a highest correlation coefficient of 0.81.  It is 
demonstrated that it is feasible to use the bagged model tree for engineering applications in 
prediction problems such as estimating the remaining service life of bridge decks.   

1 Introduction    
A couple of previous research studies on the application of machine learning techniques to 
bridge deck deterioration have been conducted and were published earlier.  In the first study, the 
k-nearest-neighbor (KNN) method was applied to the prediction of the remaining service life of 
bridge decks based solely on the degree of corrosion of the reinforcing steel bars (Melhem and 
Cheng 2003a).  The dataset used was extracted from a set of typical deck survey reports of the 
Kansas Department of Transportation (KDOT), and results were compared to those obtained 
using the C4.5 inductive learning algorithm (programming was done in C++).   The remaining 
service life was treated as a symbolic class value, and was discretized into eleven consecutive 
values (of the type “between 10 and15 years”).   In the second study, the decision tree algorithm 
with different wrapper methods was used to model general bridge deck deterioration (Melhem 
and Cheng et al. 2003b).  The dataset was from the KDOT inspection electronic database 
normally used for the Pontis bridge management system (PONTIS 2001) rather than from field 
survey reports.  The measure of bridge deck deterioration was the Health Index, which was also 
treated as discrete class value because the decision tree algorithm is used for symbolic class 
value classification.  Experiments with the inductive decision tree algorithm were done using 
Weka (Frank et al., 2000), which is a collection of machine learning programs developed at the 
University of Waikato, New Zealand.   

The data set used in this study is from the same field survey reports of bridge decks used in the 
first study.  The class/target value is the predicted remaining service life, taken as a numeric 
value, which is more suitable for the continuous space representation of the number of service 
years, rather than symbolic value as in the first study.  Based on the bagging algorithm, the 
outcomes over individual predictors are averaged as the final prediction of a true (numeric) 
target value. 

2 Regression tree and model tree 
Trees used for numeric prediction are a special type of decision trees that deal with a continuous 
goal variable.   The types of trees are divided into regression tree (RT) and model tree (MT), 
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according to the way of representing a target/class value at each leaf (Witten and Frank 2000).  
The difference between RT and MT is that RT stores a target/class value that represents the 
average (constant) value of the cases that arrive at a leaf, whereas MT uses a linear regression 
model to predict the class value of the cases that get to the leaf.  A linear form is normally 
assumed for the unknown regression function and the parameters (coefficients) of the model are 
estimated using a least squares criterion (Draper & Smith 1981).  The estimation of the 
parameters is accomplished by solving a set of linear equations.   Therefore, for RT the 
prediction at each leaf is expressed as: 
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where e is the prediction value, n is the number of instances reaching the specific leaf, and ai is 
the actual target value of the ith instance at the leaf.  For MT, the prediction at each leaf is 
represented by  
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where e, n, and ai  are the same as in Eq. (1), and, ci (i=0, 1, …,n) are the coefficient to be solved 
for. 

2.1  Constructing the regression tree and model tree 
RT and MT are first constructed using a decision tree induction algorithm to generate an initial 
tree.  Decision tree algorithms split the attribute so as to maximize the information gain, 
whereas the splitting criterion used for RT and MT is based on treating the standard deviation of 
the class values in the portion L of the learning data that gets to a particular node as a measure 
of the error at that node, thus evaluating the expected decrease in error resulting from testing 
each attribute at that node.  The best split of the attribute is taken to be the one that maximizes 
the expected decrease of error.  The expected error is measured by standard variance, and the 
expected error decrease is expressed using standard variance decrease.  These are evaluated by 
Equation (3) and (4), respectively (Witten and Frank 2000): 
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where )(2 Lσ  is the standard variance of the class values of the instances in the learning set L, 
N is the size of the learning set, yi denotes the class value of the ith instance, µ is the mean of the 
class values of the N instances, svd stands for the standard variance decrease, and L1, L2,… 
represent the subsets that result from splitting the node according to the selected attribute.  The 
splitting is recursively done according to the rule of maximizing the expected error decrease, 
and keeps going till either the class values of the instances arriving at a node change very 
slightly, i.e., their standard variance is only a small fraction of the standard variance of the 
original instance set, or only very few instances remain. 
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2.2  Handling missing values 
A revision is made to the standard variance decrease equation to take into consideration any 
missing values.  Including the missing value compensation, Eq.(4) becomes  
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where L is the set of instances that reach the node, LLT and LRT are sets in the left and right 
branches, respectively, that result from splitting on the attribute, and k is the number of 
instances without missing values for that attribute.  All splits on attributes are binary.   

2.3  Pruning the tree 
When a model tree is constructed, a linear model is needed for each interior node of the tree, not 
just at the leaves.  A model is evaluated for each node of the unpruned tree prior to pruning.  
The model takes the form nnacacacc ++++ ...22110 , where a1, a2, …, an are attribute values.  
The coefficients c0, c1, c2, …, cn are solved using standard regression.  However, only the 
attributes that are tested in the subtree below this node are used in the regression, since the other 
attributes that influence the predicted value have been considered in the tests that lead to the 
node.  After the linear model is evaluated for each interior node, the tree is pruned back from 
the leaves, as long as the estimated expected error decreases.   

2.4  Evaluating Prediction 
The evaluation measures are different for classification (symbolic class values) than for numeric 
prediction (continuous class values).  For the latter the basic quality measure, given by accuracy 
percentage or error rate, is not appropriate since errors are not simply “hit” or “miss”.  Let e1, e2,  
…, en, stand for the estimated (predicted) values of instances on the test dataset, and a1, a2,  …, an, 
denote the actual values of the instances.  Several methods can be used to evaluate the quality of 
numeric predictions.  For instance, the root mean-squared error, rmse, is the principal and most 
commonly used method, and is given by  
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 Another alternative is the mean absolute error, mae.  It considers the average of the individual 
errors not considering their sign, and is calculated as 
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Mean-squared error tends to exaggerate the influence of the instances whose prediction error is 
larger than the others, but the absolute error does not have this effect, since all sizes of error are 
dealt with equally according to their magnitude.  These two methods measure the absolute 
errors, but sometimes the averages of absolute error will be meaningless.  Therefore, the 
methods measuring relative errors are of importance.  The measures commonly used include the 
root relative squared error, rrse, and the relative absolute error, rae, which are evaluated by Eq. 
(8), and (9), respectively, 
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The last method is called the correlation coefficient, which measures the statistical correlation 
between the actual values and the predictions.  The correlation coefficient, cc, is computed as  
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where χ  is the same as in Eq. (8) and (9).  The correlation coefficient ranges from 1 for perfect 
correlation, through 0 for no correlation at all, to –1 when there are completely negatively 
correlated outcomes.  Negative values should not occur for reasonable prediction measures.  
Good performance results in a large value of the correlation coefficient, and small error rate.  
All the above methods were used to measure the prediction quality of the learning algorithms 
reported in this article. 

3 Bagging 
The idea behind bootstrap aggregating or bagging (Breiman 1994) is to generate multiple 
predictors and use these to get an aggregated predictor.  The aggregation averages over these 
individual predictors when predicting a real-valued (numeric) outcome, and votes when 
classifying a discrete-valued (symbolic) target.  The multiple predictors are formed as follows: 
Given a learning set, L, consisting of m instances, the multiple predictors of size N are generated 
by replicate datasets drawn randomly from the original set L with replacement.  Each replicate 
dataset has the same size m as the original set L, but some instances may not appear while others 
may appear more than once.  A point has been made (Breiman, 1994) that the critical factor is 
the instability of the prediction method: bagging can improve accuracy if a little disturbance in L 
can lead to different predictors being constructed; in other words, the prediction method should 
be unstable for bagging to work well.  

The computation procedure for bagging is the following: 
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(1) Given a dataset D = { ( ), 11 yx ,( ),(),...,, 22 mm yxyx } of m instances where ix  is an 
instance, and iy  is the target value relative to ix .  The dataset is divided into a test set T 
and learning set L at random. 

(2) A bootstrap sample bL is randomly drawn from L, and a tree is generated using bL and 
10-fold cross-validation.  This is repeated N times, resulting in the tree predictors 

1C (x), 2C (x),.., NC (x). 

(3) For a given instance x, its estimated numeric target value is the average over the 1C (x), 
2C (x),.., NC (x).  The differences between the estimated target value and the actual 

value are called the prediction error. 

(4) The random division of the data set is repeated, for example, 10 times, and the average 
prediction error over the 10 iterations is reported. 

4 Description of data  
In the bridge engineering domain, the deterioration of bridge decks directly affects the 
remaining service life of the deck.  The bridge deck data and the methodology for determining 
the remaining service life of concrete elements with respect to corrosion-induced deterioration 
are described in Melhem and Cheng (2003a).  The development of the methodology is given in 
Nagaraja (1997).  The attributes, originally extracted from field bridge deck survey reports from 
the Kansas Department of Transportation and used in the study, are listed in Table 1.  

 
            Table 1. Attributes/Class and their Actual Value Ranges 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The bridge deck survey reports initially contained a variable number of data points that were 
averaged to obtain the attribute values for Cover, CriticalRebarChloride, and SurfaceChloride.  
All of the attributes used are numeric (continuous), and their actual ranges are listed in Table 1.  
Factors such as concrete type, compressive strength, and water/cement ratio, service conditions 
(traffic volume, truck loads, etc.), and environmental conditions (temperature and relative 
humidity/moisture content), which all influence the deterioration of bridge decks, are not 
included in this study.  The reasons for not including such factors are given by Melhem and 
Cheng (2003a).  MT and RT are applied to the domain using only one class, with the mean 
values (numeric) of the discretized continuous space taken as the final decision (This is shown 
later in Table 4, in which column (2) gives the original class values and column (3) gives the 
corresponding class values used in this study). 

 Attributes/Class Actual Ranges of Attributes
YearBuilt 1907-1991
DeckArea 842.8-104860 (sq-ft)
AreaSpall 0-53.06 (sq-ft)

DelaminatedArea 0-190.01 (sq-ft)
Cover 0.67-4.25 (in)
CriticalRebarChloride 0-100 (%)

SurfaceChloride 0.01-0.56 (%)
YearCFS 0-72 (years)
RemainingServiceLife (Class) 1.5 – 65 (Years)
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5 Experiments 
Experiments were conducted using Weka (Frank et al., 2000) with the following five 
algorithms: (1) regression tree, RT, (2) regression tree with bagging (called bagged regression 
tree or BRT), (3) model tree, MT, (4) model tree with bagging (called bagged model tree or 
BMT), and (5) KNN.  Details about KNN algorithm were given in (Melhem and Cheng 2003a). 

5.1  Exploring the five algorithms  
The data set used from the deck survey reports includes 295 instances, and each instance has 8 
attributes, all of which are continuous/numeric. The goal consists of predicting the remaining 
service life of bridge decks.  The experiments were done using the following methodology: each 
test data was selected at random to eliminate any ordering effects, and a ten-fold cross 
validation evaluation was carried out on the selected data.  Five measures (Eq.6 through 11) 
were recorded in each iteration, and the average over the ten iterations is taken as the final value 
for each measure.  The final values are used to measure the prediction quality of the different 
algorithms.  The pruning feature was applied in all runs for the four tree algorithms.  The 
discussion of the results is presented below.   

The research results obtained by the four tree algorithms are summarized in Table 2.  It shows 
that the model of the regression tree over ten-fold cross validation leads to mean absolute error 
of 6.07, root mean squared error of 9.86, relative absolute error of 67.37%, root relative squared   
error of 76.79%, and correlation coefficient of 0.65.  While combining RT and bagging, the 
values of the above five measures are slightly but obviously improved.  As expected, the results 
obtained indicate that the larger the correlation coefficient, the smaller the errors.  Based on the 
same dataset and ten-fold cross validation, the MT produces less error values than RT alone.  As 
bagging has shown to be beneficial when combined to RT, the combination of MT and bagging 
also yields better results than MT alone.  This last combination produces the lowest error rate 
(by all four measurements) and the highest correlation coefficient.            

Table 2 Results Obtained Using the Four Individual Models 

 

 

 

 

 

 

 

 

Table 3 shows a summary of the results obtained using KNN algorithms by setting a 
series of k equal to 1 up to 10.  It can be seen from Table 3 that all results improve with 
the increase of k from 1 till 7 (except for k=5), and degrade beyond that.  This means 
that the best results are attained at k = 7, which is usually called the k’s optimal value.  
With k equal to 7, the KNN over ten-fold cross validation results in a mean absolute 
error of 5.15, a root mean squared error of 8.15, a relative absolute error of 61.02, a root 
relative squared error of 67.749%, and a correlation coefficient of 0.74. 
 

 

Model
Measure

RT Bagged RT MT Bagged MT
Mean absolute error 6.07 4.80 5.43 4.47
Root mean squared error 9.86 8.03 9.16 7.54

Relative absolute error 67.37% 53.29% 60.35% 49.67%
Root relative squared error 76.79% 62.57% 71.38% 58.78%
Correlation coefficient 0.65 0.79 0.70 0.81
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             Table 3 Results Obtained by KNN 
 

 

 

 

 

 
 

           Note: mae: mean absolute error; rmse: root mean squared error; rae: relative absolute error;    
       rrse: root relative squared error; cc: correlation coefficient 
 

5.2  Analysis of the results 
For the given dataset used in this study, the metric of mean absolute error is considered more 
meaningful than any of the others.  This can be deduced by comparing the original class/target 
values and their respective predictions.  Table 4 shows the mean absolute error, the original 
class/target values (continuous spaces), the “true” (or numeric) class/target values used here 
(averaged over original continuous spaces), and the rough predictions, where predictions are 
obtained by the numeric target value plus the mean absolute error.  The predictions and the mae 
are listed for the models giving the best results, namely the bagged MT and KNN with the 
optimal value of k (k=7).  As seen in Table 4, the larger the class values, the more accurate the 
predictions are.  This is due to the conversion (averaging over the original spaces) and the 
different intervals of the original spaces represented in this application.  Therefore, this may not 
be true for other engineering problems and cannot be generalized.  

Table 4 Comparisons of bagged MT (BMT) to KNN (k=7) 

 

 

 

 

 

 

 

 

 

 

 
The best model, bagged MT, was chosen for discussing the prediction capabilities of the 
algorithm.  Figure 1 is part of a pruned training binary model tree with 40 rules generated by the 
bagged MT scheme.  It contains 8 rules/leaves denoted by LM.  LMi is used to represent the 
prediction stored in the ith leaf.  Among the predictions stored in the 8 leaves, only four (LM2, 
LM6, LM7, and LM8) are linear functions.  The others (LM1, LM3, LM4, LM5) are constant, i.e., 
all the coefficients in Eq. (2) equals zero except c0.  Note also that not all the 8 attributes are  

k
Measures 1 2 3 4 5 6 7 8 9 10
mae 6.4 5.6 5.4 5.3 5.3 5.2 5.2 5.3 5.3 5.4
rmse 10.5 9.2 8.8 8.6 8.6 8.4 8.2 8.3 8.4 8.5
rae (%) 75.4 65.9 63.8 62.9 63.1 61.9 61.0 63.2 64.0 63.6
rrse (%) 87.6 76.1 73.4 71.4 71.8 69.7 67.7 69.0 70.2 70.2
cc 0.62 0.68 0.70 0.72 0.71 0.72 0.74 0.73 0.72 0.71

Mean absolute
Error

    (1)         (2)

Original
Range

(3)

“True”
Targets

(4)

Predictions
By BMT

(5)=(4)+(1)

Predictions
By KNN

(6)=(4)+(2)
0-3 1.5 5.97 6.65
3-6 4.5 8.97 9.65
6-10 8 12.47 13.15

10-15 12.5 16.97 17.65
15-20 17.5 21.97 22.65
20-25 22.5 26.97 27.65
25-30 27.5 31.97 32.65
30-40 35 39.47 40.15
40-50 45 49.47 50.15
50-65 57.5 61.97 62.65

BMT

4.47

KNN
(k=7)

5.15

65 up 65 69.47 70.15
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Figure 1. Part of a Pruned Bagged 
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included in the prediction functions of LM2, LM6, LM7, and LM8.  In other words, even for the 
linear functions, some of the coefficients in Eq. (2) are equal to zero. 

The selected model tree shown in Fig. 1 can be used as a model for predicting of the remaining 
service life of a bridge deck.  For example, a certain bridge deck from the data set used has the 
following values of some attributes: “CriticalRebar Chloride” = 0.00%, “Delaminated Area” = 
0.00, and “Surface Chloride”= 0.22%.  According to Figure 1, one would traverse down the tree 
starting from the root node “CriticalRebar Chloride”, and due to its value of 0.00%, which is 
less than 38.8%, take the left branch and reach the second level node “Delaminated Area”.   
With a value of 0.00, which is smaller than 15.5, one will further go again along the left branch, 
and arrive at the third level node “Surface Chloride”, whose value (0.22%) is larger than 
0.185%, and therefore take the right branch and get to the leaf called LM8.  This leaf gives the 
predicted remaining service life of the bridge deck (according the formula shown to the right of 
the Figure for LM8). 

Figure 2. Comparison of Predictions with “True” Values for 11 Typical Instances 
 
 
To analyze the predictions generated by the bagged MT, eleven instances with different 
target values were selected for testing.  The predictions and numeric target values of 
these 11 instances are shown in Figure 2 where the horizontal axis represents instances 
ranked by ascending true (numeric) class/target values, and vertical axis denotes the 
predictions and actual target values, where the “square” stands for the former, and the 
“diamond” denotes the latter.  It can be seen that the predictions for the instances with 
target values below 27.5 are very close to the true values, while the predictions for the 
instances with values beyond 27.5 (inclusive) are far from their true class values.  This is 
due to the fact that the instances (number of bridge decks) with class values (remaining service 
life) larger than or equal to 27.5 are very few in the data set.  Among the 295 instances, the 
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number of instances with the target values of 27.5, 35, 45, 57.5, and 65 is 7, 10, 3, 4, and 5, 
respectively, for a total of 29 cases, which make up about 9.8 percent of the data set. 

6 Conclusions 
This paper explored the numeric prediction of the regression tree and model tree algorithms, 
investigated whether their performance can be improved by bagging, and compared their 
performance to that of the k-nearest neighbor (KNN) algorithm.  The following conclusions can 
be made in accordance with the experiments conducted:   

• Generally speaking, the model tree gave better predictions than the regression tree.  
When bagging is used with either of the basic tree models, the bagged model tree 
remains better than the bagged regression tree regardless of which error measure is 
used. 

• The KNN algorithm achieves the optimal performance at k=7.  It is more efficient than 
the model tree and regression tree, but worse than the bagged model tree and bagged 
regression tree. 

• Bagging consistently improves the numeric prediction.  It leads to a decrease of 1.99 in 
the mean absolute error and an increase of 0.14 in the correlation coefficient when 
combined to the decision tree, and a decrease of 0.96 in the error and an increase of 0.11 
in the correlation when combined to the model tree.  Bagging made the regression tree 
(which was not as good) more efficient than the model tree. 

• For problems with class values that are numeric in nature such as the number of 
remaining service years investigated in this study, the measure of mean absolute error is 
preferred over all others since the original target value (the remaining service life) 
should actually be a continuous space.  The “true” (numeric) value used here is the 
numeric average of the initially discretized ranges.  Consequently, the final results from 
the prediction plus/minus the mean absolute error either exactly fall into, or are very 
close to the numeric range. 

• The best algorithm is the bagged model tree, which yields the highest correlation 
coefficient of 0.81, and the lowest mean absolute error of 4.47.   

It should be noted that neither the best correlation coefficient nor the lowest mean absolute error 
obtained in this study is ideal.  Future research emphasis is placed on two things: First is the 
enhancement of the dataset by both increasing the size of the dataset and including some other 
important attributes.  Second is the improvement of the numeric prediction algorithms.  Two or 
more methodologies may be integrated rather than combining the individual predictions.  For 
example, the k-nearest-neighbor, or the Kernel model may be used instead of the linear model in 
the model tree algorithm.  Also, other regression methods such as fitting exponential and 
quadratic regression may be used in the model tree instead of the linear regression. 
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