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Summary 
Available construction time-cost trade-off analysis models can be used to generate trade-offs 
between these two important objectives, however, their application is limited in large-scale 
construction projects due to their impractical computational requirements. This paper presents 
the development of a scalable and multi-objective genetic algorithm that provides the capability 
of simultaneously optimizing construction time and cost large-scale construction projects. The 
genetic algorithm was implemented in a distributed computing environment that utilizes a 
recent standard for parallel and distributed programming called the message passing interface 
(MPI). The performance of the model is evaluated using a set of measures of performance and 
the results demonstrate the capability of the present model in significantly reducing the 
computational time required to optimize large-scale construction projects.  

1 Introduction 
Construction duration can be reduced by using additional resources, which is often accompanied 
by additional construction costs. This trade-off has been the focus of many research efforts that 
attempted to identify an optimal trade-off between these two conflicting objectives (Easa 1989, 
Chan et al. 1996, Hegazy 1999, Gomar et al. 2002, Mattila and Abraham 1998, Burns et al. 
1996, Feng et al. 1997, Li and Love 1997, Hegazy and Ersahin 2001, Hegazy and Wassef 2001, 
Li et al. 1999, Leu and Hwang 2001, Leu et al. 1999, Feng et al. 2000, Adeli and Karim 1997). 
Available models that used traditional optimization methods (e.g. linear programming, and 
dynamic programming) suffered from combinatorial explosion when applied to large 
construction projects (Adeli and Karim 1997, Mattila and Abraham 1998, Burns et al. 1996). 
Other models that utilized genetic algorithms (GAs) were not capable of providing an efficient 
solution for large-scale construction projects (Hegazy and Petzold 2003).  

Existing GA models were applied to projects ranging from 7 to 66 activities as shown in Figure 
1, while the median number of activities in a construction schedule was found to be slightly 
greater than 300 activities in a recent survey of construction planners (Liberatore et al. 2001). 
The example construction project composed of 66 activities required 6 hours of continuous 
genetic algorithm computations to optimize (Hegazy and Petzold 2003). This computational 
time is estimated to increase as a function of the square of the project size, which indicates that 
projects with a larger number of activities are even more computationally expensive (Chan et al. 
1996). Distributed computing has been recently applied to solve large-scale optimization 
problems in a number of civil engineering disciplines including: 1) finite element analysis 
(Sziveri and Topping 2000); 2) structural design (Adeli 2000); and 3) water network design 
(Balla and Lingireddy 2000; Alonso et al. 2000). While these research studies have provided 
efficient solutions for these large-scale engineering problems, there has been little or no reported 
research exploring the promising potential of distributed computing in optimizing large-scale 
construction projects. 
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Figure1. Project Sizes in Previous Models 

This paper presents the development of a robust optimization model capable of minimizing the 
cost and duration of real-life large-scale construction projects. The model utilizes: 1) a multi-
objective genetic algorithm that supports the simultaneous optimization of project cost and time; 
2) a distributed computing environment based on the global parallel GA paradigm; and 3) three 
performance measures to evaluate the effectiveness of the parallel implementation.  

2 Multi-Objective Genetic Algorithm  
The present model utilizes an advanced multi-objective genetic algorithm that evaluates the 
trade-off between project time and cost (Deb 2001; Deb et al. 2001; Zitzler et al. 2001; 
Watanabe et al. 2002; Hiroyasu et al. 2002). The genetic algorithm is developed in two main 
phases: 1) genetic algorithm formulation; and 2) genetic algorithm implementation.  

2.1 Genetic Algorithm Formulation  
The formulated GA aggregates the decision variables in this optimization problem into a group 
artificial strings that form a population. Each of these strings represents a feasible solution for 
the trade-off problem, and holds a single value of a decision variable that represents the level of 
resource utilization (n) for each activity in the project. Resource utilization combines the three 
decision variables considered in this model namely: (1) construction method (m), which 
indicates the availability of different types of materials and/or methods that can be utilized; (2) 
crew formation (f), which represents feasible sizes and configurations for construction crews; 
and (3) crew overtime policy (p), which represents available overtime hours and nighttime 
shifts. The GA strings formulated for this model are binary strings with lengths equal to the 
number of activities (I) multiplied by the number of bits required to represent the available 
resource utilizations (N) for each activity. For example the binary string shown in Figure 2 
represents a project composed of 5 activities that have 7 resource utilization alternatives each. 
This string is composed of a total of 15 bits, since the 7 alternatives are represented by 3 binary 
bits.  
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A B C D E

1  0  01  1  01  1  11  0  10  0  1
22 21 2022 21 2022 21 2022 21 2022 21 20

1  0  01  1  01  1  11  0  10  0  1
22 21 2022 21 2022 21 2022 21 2022 21 20

 

Figure 2. Binary String Formulation.  

The current model is formulated to enable the optimization of construction cost and duration. 
These two equations are used to evaluate the fitness of each string/solution generated during the 
GA operations as shown in equations 1 and 2.  
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Where, Ti
n = duration of activity (i) on the critical path using resource utilization (n). In this 

model, project duration is estimated using newly developed algorithms for the scheduling of 
highway construction (El-Rayes 2001, El-Rayes and Moselhi 2001). 
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Where, Mi
n = material cost of activity (i) using resource utilization (n); Di

n = duration of activity 
(i) using resource utilization (n); Ri

n = daily cost rate in $/day of resource utilization (n) in 
activity (i); Bi

n = subcontractor lump sum cost for resource utilization (n) in activity i, if any. 

2.2 Genetic Algorithm Implementation 
The present multi-objective GA is implemented in three main stages: 1) GA initialization; 2) 
function evaluation; and 3) evolution, as shown in Figure 3. The GA initialization generates a 
set of random solutions to form the initial population of feasible solutions. The function 
evaluation stage evaluates the project costs and durations for the different solutions in each of 
the generated populations. The fitness values calculated by this stage are then used by the 
evolution stage to generate new populations of feasible solutions. The evolution stage performs 
four main functions: 1) calculates the Pareto optimal rank of all solutions in each population; 2) 
calculates the crowding distance of all solutions in each population; 3) creates child populations; 
and 4) creates combined populations, as shown in Figure 3. First, Pareto optimal rank is 
calculated by ranking the solutions in the population according to their domination of other 
solutions, where a solution is identified as dominant if it is better than all other solutions in all 
of the considered optimization objectives simultaneously. Second, the crowding distance of 
each solution is calculated, by evaluating the closeness of neighboring solutions to the solution 
considered. The crowding distance values help the algorithm spread the obtained solutions over 
a wider Pareto optimal front instead of converging to points that cover only a small part of the 
tradeoff curve (Deb et al. 2001). Third, a child population is created using selection, crossover 
and mutation based on the calculated optimal rank and crowding distance. Fourth, child and 
parent populations are then combined to form a new combined population. This new combined 
population acts as a vehicle for elitism, where good solutions of the initial parent population are 
passed on to the following generations to avoid loss of good solutions once they are found (Deb 
et al. 2001). The new combined population (Ng) is then sorted using the niched comparison rule 
and the top solutions from the combined population are kept to form the parent population of 
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the next generation. This sorting rule selects solutions with higher Pareto optimal ranks and 
breaks ties between solutions with the same rank by favoring solutions with higher crowding 
distances.  
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Figure 3. Multi-objective Genetic Algorithm. 

3 Distributed Computing Environment  
The developed model relies on a robust distributed computing environment that makes the 
optimization of large scale construction projects feasible. The design of this environment 
follows the global parallel GA paradigm in which a manager processor administers the 
operation of a number of worker processors that only perform the function evaluation stage of 
the developed multi-objective GA. The manager processor executes all stages of the developed 
multi-objective GA, and performs a number of administrative tasks such as distributing sub-
populations of solutions to worker processors, and gathering the fitness values associated with 
each solution in the population. These tasks require communication between the manager and 
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worker processors, which is implemented using the message passing interface (MPI) (Snir et al 
1998).  The main reason for selecting MPI to implement this environment is its wide acceptance 
as a standard for distributed programming in both academia and the industry, and its support for 
portability (Gropp et al. 1999). This makes the developed environment operable on a wide range 
of computing systems that includes Linux clusters, and networks of workstations. The current 
distributed computing environment is implemented in two steps: 1) structuring the multi-
objective GA for parallelization; and 2) applying the MPI communication functions.  

3.1 Structuring the Parallel Genetic Algorithm  
The execution of the present distributed environment consists of a number of independent 
processes that execute dissimilar code on separate processors. Processes executed by the 
manager processor implement all three stages of the developed multi-objective GA, while 
processes performed by worker processors execute the function evaluation stage. These 
processes communicate through calls to MPI functions that pass messages between processes 
using a communicator (Gropp et al.1999). The present distributed environment is implemented 
in the following six steps:  

1- Include the MPI header file, which contains the definitions and prototypes of all the MPI 
functions used in the implementation of the environment, at the beginning of the multi-
objective GA code (Girianna 2002). 

2- Initialize MPI communication using an MPI initialization call at the beginning of the 
main function of the multi-objective GA code.  

3- Set the rank of the processes in the communicator by calling the MPI_rank function. The 
process rank is the identification number given to each process in the communicator. 

4- Set the communicator size by calling the MPI_Comm_size function, surveys the number 
of processes that will be executed by the environment.  

5- Include the statements and functions that execute the different stages of the multi-
objective GA and the different MPI communication functions.  

6- Terminate communications by calling MPI_finalize function after all the MPI function 
calls have been made (Pacheco 1998).  

3.2 Applying the MPI Communication Functions  
There are two main MPI communication functions used in the development of the present 
distributed environment: 1) the MPI_Scatter function; and 2) the MPI_Gather function. 
MPI_Scatter divides the message sent at the sending process into x equal segments then sends 
the x messages to all receiving processes, and also receives the sent messages from sending 
processes. The MPI_Scatter function is used in the present environment for sending individuals 
from the manager processor to the worker processors as shown in Figure 4. The send buffer at 
the manager processor contains the decoded values of the whole population. The corresponding 
receive buffer at each of the worker processors accepts the decoded value of a single individual. 
The MPI_Gather function on the other hand has the same syntax as MPI_Scatter, but behaves 
the exact opposite way. This function takes the same parameters as MPI_Scatter, but collects 
the messages arriving to the receiving process and assembles them in the receive buffer instead 
of sending them.  The MPI_Gather function is used in the present environment to return fitness 
values of the evaluated solutions to the manager processor as shown in Figure 4. The send 
buffer at each worker process contains the value of the objective functions evaluated for each 
solution. The receive buffer at the manager processor contains the objective function values for 
all solutions in the population which equals the population size (N) multiplied by the number of 
objective functions (O).  
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 Figure 4. Parallelized implementation of the model  

4 Measures of Performance  
The current model was tested at the University of Illinois’s Turing Linux Cluster, which 
consists of 208 dual-processor machines (for a total of 416 processors) with two 1 GHz Pentium 
III processors and 1 GB of RAM each. The cluster was accessed through a 1.5 GHz quad-
processor Pentium III Xeon front-end server. The primary network connecting the cluster 
machines is a high-bandwidth, low-latency Myrinet network. In addition, all machines in the 
cluster are also connected by a 100 Mbs switched, full-duplex Ethernet and there is a 1 Gbs link 
between the front-end and the primary switch (CSE 2003).  

Different numbers of processors were used for the performance evaluation tests, and the 
developed algorithm was tested using three sample construction projects composed of 180, 360, 
and 720 activities respectively. Each of these construction projects required a different string 
length and hence a different population size (Reed et al. 2002). The performance of the 
implemented model was evaluated using three main measures namely the elapsed time, parallel 
speed-up, and parallel GA efficiency.  

4.1 Elapsed Time 
The elapsed time (Tp) is the time required by the parallel model to perform the GA functions 
explained in Figures 3 and 4. Elapsed time is composed of two main components: 1) evaluation 
time (Et), which estimates the time required for function evaluation by processors; and 2) the 
total communication time (Ct), which is the time required to perform the communication 
functions in the model. Elapsed time is given by equation 3 (Cantú-Paz 2000).  

( )p
p

TSCET x
f

ttp ×++






 ×
=+= βα           (3) 

Where, S= number of individuals in the GA population; p= number of processors used; x= 
empirical factor associated with efficiency of the implementation; Tf= time required for the 



Page 7 of 10 

evaluation of a single individual; α= communication time constant which depends on the 
number of individuals in the population and the size of GA string; β= slope of the 
communication function which depends on the number of individuals in the population and 
network latency.  

The total elapsed time per generation for the developed model was measured for each of the 
tested projects using a varying number of processors as shown in Figure 5. The time savings per 
generation were found to be greatest for the larger project. The magnitude of these time savings 
is amplified by the fact that the number of generations needed to optimize larger problems is 
larger than that of a smaller one. This makes the application of the developed model more 
efficient on large problems.  
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Figure 5. Total Elapsed Time per Generation. 

4.2 Parallel Speed up 
Parallel speed up (ψ) is a measure of effectiveness that compares the performance of the parallel 
GA to that of a serial GA, and can be calculated using equation 4 (Cantú-Paz 2000).  

p

s

T
T

=ψ               (4) 

Where, ψ= parallel speedup; Tp= elapsed time of the parallel GA; and Ts= elapsed time of the 
serial GA.  

The parallel speedup of the developed model was measured for the same set of projects and 
number of processors shown in Figure 5. The results show that a parallel speedup of  8 and 4 
times  the speed of the serial algorithm can be achieved for the 720-activity and 180-activity 
projects, respectively. These obtained parallel speedups clearly displayed Amdahl’s effect, 
which predicts that speedup would increase as the problem size increases (Quinn 2004).  

4.3 Parallel GA Efficiency 
Parallel GA efficiency is used to measure the deviation of the parallel GA implementation from 
ideal conditions, and is calculated as shown in equation 7 (Cantú-Paz 2000).  
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Where, p= number of processors used; Tp= elapsed time of the parallel GA; and Ts= elapsed 
time of the serial GA.  

Ideal conditions occur if the gains made by the addition of each new processor do not diminish. 
This condition is also called linear speed up, which rarely occurs in reality due to the presence 
of network latencies and other factors that lead to loss of efficiency. The 720-activity project 
was found to have a higher efficiency than the remaining projects, which can be attributed to the 
higher speedups larger projects achieve.   

5 Endnotes 
A robust multi-objective GA model was developed for optimizing project cost and duration in 
large construction projects using a distributed computing environment. The model was 
developed in three stages that: 1) developed a robust multi-objective GA; 2) implemented an 
efficient distributed computing environment; and 3) evaluated the performance of the model 
using four measures . The measures of performance employed showed that the developed 
parallel environment was capable of optimizing large construction projects up to 8 times faster 
than a serial GA. Further, large construction projects were found to have higher efficiencies than 
smaller ones. This makes the current distributed optimization model capable of efficiently 
analyzing large-scale real-life construction projects that were previously infeasible to consider.  
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