
Page 1 of 10

Distributed Computing for the Optimization of Large-Scale
Construction Projects

Amr Kandil, University of Illinois at Urbana-Champaign (akandil@uiuc.edu)

Khaled El-Rayes, University of Illinois at Urbana-Champaign (elrayes@uiuc.edu)

Summary
Available construction time-cost trade-off analysis models can be used to generate trade-offs
between these two important objectives, however, their application is limited in large-scale
construction projects due to their impractical computational requirements. This paper presents
the development of a scalable and multi-objective genetic algorithm that provides the capability
of simultaneously optimizing construction time and cost large-scale construction projects. The
genetic algorithm was implemented in a distributed computing environment that utilizes a
recent standard for parallel and distributed programming called the message passing interface
(MPI). The performance of the model is evaluated using a set of measures of performance and
the results demonstrate the capability of the present model in significantly reducing the
computational time required to optimize large-scale construction projects.

1 Introduction
Construction duration can be reduced by using additional resources, which is often accompanied
by additional construction costs. This trade-off has been the focus of many research efforts that
attempted to identify an optimal trade-off between these two conflicting objectives (Easa 1989,
Chan et al. 1996, Hegazy 1999, Gomar et al. 2002, Mattila and Abraham 1998, Burns et al.
1996, Feng et al. 1997, Li and Love 1997, Hegazy and Ersahin 2001, Hegazy and Wassef 2001,
Li et al. 1999, Leu and Hwang 2001, Leu et al. 1999, Feng et al. 2000, Adeli and Karim 1997).
Available models that used traditional optimization methods (e.g. linear programming, and
dynamic programming) suffered from combinatorial explosion when applied to large
construction projects (Adeli and Karim 1997, Mattila and Abraham 1998, Burns et al. 1996).
Other models that utilized genetic algorithms (GAs) were not capable of providing an efficient
solution for large-scale construction projects (Hegazy and Petzold 2003).

Existing GA models were applied to projects ranging from 7 to 66 activities as shown in Figure
1, while the median number of activities in a construction schedule was found to be slightly
greater than 300 activities in a recent survey of construction planners (Liberatore et al. 2001).
The example construction project composed of 66 activities required 6 hours of continuous
genetic algorithm computations to optimize (Hegazy and Petzold 2003). This computational
time is estimated to increase as a function of the square of the project size, which indicates that
projects with a larger number of activities are even more computationally expensive (Chan et al.
1996). Distributed computing has been recently applied to solve large-scale optimization
problems in a number of civil engineering disciplines including: 1) finite element analysis
(Sziveri and Topping 2000); 2) structural design (Adeli 2000); and 3) water network design
(Balla and Lingireddy 2000; Alonso et al. 2000). While these research studies have provided
efficient solutions for these large-scale engineering problems, there has been little or no reported
research exploring the promising potential of distributed computing in optimizing large-scale
construction projects.

Page 2 of 10

0

10

20

30

40

50

60

70

H
egazy and

W
assef (2001)

Li and Love
(1997)

Li et al. (1999)

Leu and H
w

ang
(2001)

H
egazy and

Ersahin (2001)

Feng et al. (1997)

H
egazy and

Petzold (2003)

Figure1. Project Sizes in Previous Models

This paper presents the development of a robust optimization model capable of minimizing the
cost and duration of real-life large-scale construction projects. The model utilizes: 1) a multi-
objective genetic algorithm that supports the simultaneous optimization of project cost and time;
2) a distributed computing environment based on the global parallel GA paradigm; and 3) three
performance measures to evaluate the effectiveness of the parallel implementation.

2 Multi-Objective Genetic Algorithm
The present model utilizes an advanced multi-objective genetic algorithm that evaluates the
trade-off between project time and cost (Deb 2001; Deb et al. 2001; Zitzler et al. 2001;
Watanabe et al. 2002; Hiroyasu et al. 2002). The genetic algorithm is developed in two main
phases: 1) genetic algorithm formulation; and 2) genetic algorithm implementation.

2.1 Genetic Algorithm Formulation
The formulated GA aggregates the decision variables in this optimization problem into a group
artificial strings that form a population. Each of these strings represents a feasible solution for
the trade-off problem, and holds a single value of a decision variable that represents the level of
resource utilization (n) for each activity in the project. Resource utilization combines the three
decision variables considered in this model namely: (1) construction method (m), which
indicates the availability of different types of materials and/or methods that can be utilized; (2)
crew formation (f), which represents feasible sizes and configurations for construction crews;
and (3) crew overtime policy (p), which represents available overtime hours and nighttime
shifts. The GA strings formulated for this model are binary strings with lengths equal to the
number of activities (I) multiplied by the number of bits required to represent the available
resource utilizations (N) for each activity. For example the binary string shown in Figure 2
represents a project composed of 5 activities that have 7 resource utilization alternatives each.
This string is composed of a total of 15 bits, since the 7 alternatives are represented by 3 binary
bits.

Page 3 of 10

A B C D E

1 0 01 1 01 1 11 0 10 0 1
22 21 2022 21 2022 21 2022 21 2022 21 20

1 0 01 1 01 1 11 0 10 0 1
22 21 2022 21 2022 21 2022 21 2022 21 20

Figure 2. Binary String Formulation.

The current model is formulated to enable the optimization of construction cost and duration.
These two equations are used to evaluate the fitness of each string/solution generated during the
GA operations as shown in equations 1 and 2.

 ∑
=

=
I

1i

n
iTTimeProject Minimize (1)

Where, Ti
n = duration of activity (i) on the critical path using resource utilization (n). In this

model, project duration is estimated using newly developed algorithms for the scheduling of
highway construction (El-Rayes 2001, El-Rayes and Moselhi 2001).

)](B)RD[(MCostProject Minimize n
i

n
i

n
i

I

1i

n
i +×+=∑

=

 (2)

Where, Mi
n = material cost of activity (i) using resource utilization (n); Di

n = duration of activity
(i) using resource utilization (n); Ri

n = daily cost rate in $/day of resource utilization (n) in
activity (i); Bi

n = subcontractor lump sum cost for resource utilization (n) in activity i, if any.

2.2 Genetic Algorithm Implementation
The present multi-objective GA is implemented in three main stages: 1) GA initialization; 2)
function evaluation; and 3) evolution, as shown in Figure 3. The GA initialization generates a
set of random solutions to form the initial population of feasible solutions. The function
evaluation stage evaluates the project costs and durations for the different solutions in each of
the generated populations. The fitness values calculated by this stage are then used by the
evolution stage to generate new populations of feasible solutions. The evolution stage performs
four main functions: 1) calculates the Pareto optimal rank of all solutions in each population; 2)
calculates the crowding distance of all solutions in each population; 3) creates child populations;
and 4) creates combined populations, as shown in Figure 3. First, Pareto optimal rank is
calculated by ranking the solutions in the population according to their domination of other
solutions, where a solution is identified as dominant if it is better than all other solutions in all
of the considered optimization objectives simultaneously. Second, the crowding distance of
each solution is calculated, by evaluating the closeness of neighboring solutions to the solution
considered. The crowding distance values help the algorithm spread the obtained solutions over
a wider Pareto optimal front instead of converging to points that cover only a small part of the
tradeoff curve (Deb et al. 2001). Third, a child population is created using selection, crossover
and mutation based on the calculated optimal rank and crowding distance. Fourth, child and
parent populations are then combined to form a new combined population. This new combined
population acts as a vehicle for elitism, where good solutions of the initial parent population are
passed on to the following generations to avoid loss of good solutions once they are found (Deb
et al. 2001). The new combined population (Ng) is then sorted using the niched comparison rule
and the top solutions from the combined population are kept to form the parent population of

Page 4 of 10

the next generation. This sorting rule selects solutions with higher Pareto optimal ranks and
breaks ties between solutions with the same rank by favoring solutions with higher crowding
distances.

3.1) Calculate Pareto Optimal Rank and Crowding Distance
for Each Solution of the Parent Population

 Next Generation

1.2) Generate Random Solutions for Parent Population of
First Generation

2.2) Calculate Project Duration for Each Solution in the
Population

∑
=

=
I

1i

n
iTTime

3.4) Sort New Combined Population using Niched
Comparison and Keep Top Solutions to Form Next

Generation’s Parent Population

Start

End Yes

No

1.1) Read Project and GA Parameters

2.1) Calculate Project Cost for Each Solution in the
Population

)](SB)CRDR[(MTCost n
i

n
i

n
i

I

1i

n
i +×+=∑

=

3.3) Combine Child and Parent Populations to Form a New
Combined Population and Calculate Pareto Optimal Rank

and Crowding Distance for Each Solution of the Combined
Population

Child Population

No

Yes

3.2) Create a Child Population Using Selection, Crossover
and Mutation

Last Generation

Stage 1: GA Initialization

Stage 2: Function Evaluation

Stage 3: Evolution

Figure 3. Multi-objective Genetic Algorithm.

3 Distributed Computing Environment
The developed model relies on a robust distributed computing environment that makes the
optimization of large scale construction projects feasible. The design of this environment
follows the global parallel GA paradigm in which a manager processor administers the
operation of a number of worker processors that only perform the function evaluation stage of
the developed multi-objective GA. The manager processor executes all stages of the developed
multi-objective GA, and performs a number of administrative tasks such as distributing sub-
populations of solutions to worker processors, and gathering the fitness values associated with
each solution in the population. These tasks require communication between the manager and

Page 5 of 10

worker processors, which is implemented using the message passing interface (MPI) (Snir et al
1998). The main reason for selecting MPI to implement this environment is its wide acceptance
as a standard for distributed programming in both academia and the industry, and its support for
portability (Gropp et al. 1999). This makes the developed environment operable on a wide range
of computing systems that includes Linux clusters, and networks of workstations. The current
distributed computing environment is implemented in two steps: 1) structuring the multi-
objective GA for parallelization; and 2) applying the MPI communication functions.

3.1 Structuring the Parallel Genetic Algorithm
The execution of the present distributed environment consists of a number of independent
processes that execute dissimilar code on separate processors. Processes executed by the
manager processor implement all three stages of the developed multi-objective GA, while
processes performed by worker processors execute the function evaluation stage. These
processes communicate through calls to MPI functions that pass messages between processes
using a communicator (Gropp et al.1999). The present distributed environment is implemented
in the following six steps:

1- Include the MPI header file, which contains the definitions and prototypes of all the MPI
functions used in the implementation of the environment, at the beginning of the multi-
objective GA code (Girianna 2002).

2- Initialize MPI communication using an MPI initialization call at the beginning of the
main function of the multi-objective GA code.

3- Set the rank of the processes in the communicator by calling the MPI_rank function. The
process rank is the identification number given to each process in the communicator.

4- Set the communicator size by calling the MPI_Comm_size function, surveys the number
of processes that will be executed by the environment.

5- Include the statements and functions that execute the different stages of the multi-
objective GA and the different MPI communication functions.

6- Terminate communications by calling MPI_finalize function after all the MPI function
calls have been made (Pacheco 1998).

3.2 Applying the MPI Communication Functions
There are two main MPI communication functions used in the development of the present
distributed environment: 1) the MPI_Scatter function; and 2) the MPI_Gather function.
MPI_Scatter divides the message sent at the sending process into x equal segments then sends
the x messages to all receiving processes, and also receives the sent messages from sending
processes. The MPI_Scatter function is used in the present environment for sending individuals
from the manager processor to the worker processors as shown in Figure 4. The send buffer at
the manager processor contains the decoded values of the whole population. The corresponding
receive buffer at each of the worker processors accepts the decoded value of a single individual.
The MPI_Gather function on the other hand has the same syntax as MPI_Scatter, but behaves
the exact opposite way. This function takes the same parameters as MPI_Scatter, but collects
the messages arriving to the receiving process and assembles them in the receive buffer instead
of sending them. The MPI_Gather function is used in the present environment to return fitness
values of the evaluated solutions to the manager processor as shown in Figure 4. The send
buffer at each worker process contains the value of the objective functions evaluated for each
solution. The receive buffer at the manager processor contains the objective function values for
all solutions in the population which equals the population size (N) multiplied by the number of
objective functions (O).

Page 6 of 10

M
an

ag
er

 P
ro

ce
ss

or

Initialization

W
or

ke
r P

ro
ce

ss
or

s

MPI Communicator

Fitness
Evaluation

Generation
Evolution

ƒ1(X)

ƒ2(X)

101010101111000111

101010101111000111

.

.

Fitness
Evaluation

ƒ1(X)

ƒ2(X)

Processor 1

Fitness
Evaluation

ƒ1(X)

ƒ2(X)

Processor 2

Fitness
Evaluation

ƒ1(X)

ƒ2(X)

Processor P

Sc
at

te
r

N
 S

tri
ng

s

G
at

he
r

N
xO

V
al

ue
s

Scatter
N/P Strings

Gather
NxO/P Values

Scatter
N/P Strings

Gather
NxO/P Values

 Figure 4. Parallelized implementation of the model

4 Measures of Performance
The current model was tested at the University of Illinois’s Turing Linux Cluster, which
consists of 208 dual-processor machines (for a total of 416 processors) with two 1 GHz Pentium
III processors and 1 GB of RAM each. The cluster was accessed through a 1.5 GHz quad-
processor Pentium III Xeon front-end server. The primary network connecting the cluster
machines is a high-bandwidth, low-latency Myrinet network. In addition, all machines in the
cluster are also connected by a 100 Mbs switched, full-duplex Ethernet and there is a 1 Gbs link
between the front-end and the primary switch (CSE 2003).

Different numbers of processors were used for the performance evaluation tests, and the
developed algorithm was tested using three sample construction projects composed of 180, 360,
and 720 activities respectively. Each of these construction projects required a different string
length and hence a different population size (Reed et al. 2002). The performance of the
implemented model was evaluated using three main measures namely the elapsed time, parallel
speed-up, and parallel GA efficiency.

4.1 Elapsed Time
The elapsed time (Tp) is the time required by the parallel model to perform the GA functions
explained in Figures 3 and 4. Elapsed time is composed of two main components: 1) evaluation
time (Et), which estimates the time required for function evaluation by processors; and 2) the
total communication time (Ct), which is the time required to perform the communication
functions in the model. Elapsed time is given by equation 3 (Cantú-Paz 2000).

()p
p

TSCET x
f

ttp ×++

 ×
=+= βα (3)

Where, S= number of individuals in the GA population; p= number of processors used; x=
empirical factor associated with efficiency of the implementation; Tf= time required for the

Page 7 of 10

evaluation of a single individual; α= communication time constant which depends on the
number of individuals in the population and the size of GA string; β= slope of the
communication function which depends on the number of individuals in the population and
network latency.

The total elapsed time per generation for the developed model was measured for each of the
tested projects using a varying number of processors as shown in Figure 5. The time savings per
generation were found to be greatest for the larger project. The magnitude of these time savings
is amplified by the fact that the number of generations needed to optimize larger problems is
larger than that of a smaller one. This makes the application of the developed model more
efficient on large problems.

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

Number of Processors

E
lla

ps
ed

 T
im

e
(s

ec
)

180 activities 360 activities 720 activities

Figure 5. Total Elapsed Time per Generation.

4.2 Parallel Speed up
Parallel speed up (ψ) is a measure of effectiveness that compares the performance of the parallel
GA to that of a serial GA, and can be calculated using equation 4 (Cantú-Paz 2000).

p

s

T
T

=ψ (4)

Where, ψ= parallel speedup; Tp= elapsed time of the parallel GA; and Ts= elapsed time of the
serial GA.

The parallel speedup of the developed model was measured for the same set of projects and
number of processors shown in Figure 5. The results show that a parallel speedup of 8 and 4
times the speed of the serial algorithm can be achieved for the 720-activity and 180-activity
projects, respectively. These obtained parallel speedups clearly displayed Amdahl’s effect,
which predicts that speedup would increase as the problem size increases (Quinn 2004).

4.3 Parallel GA Efficiency
Parallel GA efficiency is used to measure the deviation of the parallel GA implementation from
ideal conditions, and is calculated as shown in equation 7 (Cantú-Paz 2000).

Page 8 of 10

p

s

Tp
TE
×

= (5)

Where, p= number of processors used; Tp= elapsed time of the parallel GA; and Ts= elapsed
time of the serial GA.

Ideal conditions occur if the gains made by the addition of each new processor do not diminish.
This condition is also called linear speed up, which rarely occurs in reality due to the presence
of network latencies and other factors that lead to loss of efficiency. The 720-activity project
was found to have a higher efficiency than the remaining projects, which can be attributed to the
higher speedups larger projects achieve.

5 Endnotes
A robust multi-objective GA model was developed for optimizing project cost and duration in
large construction projects using a distributed computing environment. The model was
developed in three stages that: 1) developed a robust multi-objective GA; 2) implemented an
efficient distributed computing environment; and 3) evaluated the performance of the model
using four measures . The measures of performance employed showed that the developed
parallel environment was capable of optimizing large construction projects up to 8 times faster
than a serial GA. Further, large construction projects were found to have higher efficiencies than
smaller ones. This makes the current distributed optimization model capable of efficiently
analyzing large-scale real-life construction projects that were previously infeasible to consider.

6 References
Adeli, H. (2000) “High Performance Computing for Large-Scale Analysis, Optimization, and
Control,” Journal of Aerospace Engineering, ASCE, 13(1), 1-10.

Adeli, H. and Karim, A. (1997). "Scheduling/Cost Optimization and Neural Dynamics Model
for Construction Projects," J. Constr. Engrg. Mgmt., ASCE, 123(4), 450-458.

Alonso, J., Alvarriuz, F., Guerrero, D., Hernández, V., Ruiz, P., Vidal, A., Martinez, F.,
Vercher, J., and Ulanicki, B. (2000). “Parallel Computing in Water Network Analysis and
Leakage Minimization” J. Water Resour. Plng. and Mgmt, ASCE, 126(4), 251-260.

Balla, M., and Lingireddy, S. (2000) “Distributed Genetic Algorithm Model on Network of
Personal Computers” J. Comp. Civ. Engrg., ASCE, 14(3), 199-205.

Burns, S., Liu, L., and Feng, C. (1996) "The LP/IP hybrid Method for Construction Time-Cost
Trade-Off Analaysis," J. Constr. Mgmt. Econ., 14, 265-276.

Cantú-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms, Kluwer Academic
Publishers, Boston, MA.

Cantú-Paz, E. (1997) “A Survey of Parallel Genetic Algorithms” ILLGAL Report No. 97003,
Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana Champaign, Urbana,
Illinois, USA.

University of Illinois at Urbana Champaign Computation Science and Engineering Program
(CSE) (2003) “The Turing Linux Cluster.” http://turing.cse.uiuc.edu.

Chan, W., Chua, D., and Kannan, G. (1996) “Construction Resource Scheduling with Genetic
Algorithms” J. Constr. Engrg. Mgmt., ASCE, 122(2), 125-132.

Page 9 of 10

Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms, John Wiley &
Sons, LTD, New York, NY.

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2001). “A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-objective Optimization.” KANGAL Report 200001,
Genetic Algorithm Laboratory, Indian Institute of Technology, Kanpur, India.

Easa, S. (1989) "Resource Leveling in Construction by Optimization," J. Constr. Engrg. Mgmt.,
ASCE, 115(2), 302-316.

El-Rayes, K. (2001) "Optimum Planning of Highway Construction Under the A + B Bidding
Method,” J. Constr. Engrg. Mgmt., ASCE, 127(4), 261-269.

El-Rayes, K., and Moselhi, O. (2001) "Optimizing Resource Utilization for Repetitive
Construction Projects," J. Constr. Engrg. Mgmt., ASCE, 127(1), 18-27.

Feng, C., Liu, L., and Burns, S. A. (1997). “Using Genetic Algorithms to Solve Construction
Time-Cost Trade-Off Problems .” J. Comp. Civ. Engrg., ASCE, 11(3), 184-189.

Feng, C., Liu, L. and Burns, S. (2000) "Stochastic Construction Time-Cost Trade-Off Analysis,"
J. Comp. Civ. Engrg., ASCE, 14(2), 117-126.

Gomar, J., Haas, C. and Morton, D. (2002) "Assignment and Allocation Optimization of
Partially Multiskilled Workforce," J. Constr. Engrg. Mgmt., ASCE, 128(2), 103-109.

Gropp, W., Lusk, E., and Thakur, R. (1999). Using MPI-2: Advanced Features of the Message
Passing Interface, Massachusetts Institute of Technology, Cambridge, MA.

Girianna, M. (2002). “Dynamic Signal Coordination Model for a Network with Oversaturated
Intersections,” Phd/thesis, Univ. of Illinois at Urbana Champaign, Urbana, Illinois, USA.

Hegazy, T. and Petzold, K. (2003) " Genetic Optimization for Dynamic Project Control," J.
Constr. Engrg. Mgmt, ASCE, 129(4), 396-404.

Hegazy, T., and Wassef, N. (2001) “Cost Optimization in Projects with Repetitive Nonserial
Activities” J. Constr. Engrg. Mgmt., ASCE, 127(3), 183-191.

Hegazy, T., and Ersahin, T. (2001) “Simplified Spreadsheet Solutions. II: Overall Schedule
Optimization, ” J. Constr. Engrg. Mgmt., ASCE, 127(6), 469-475.

Hegazy, T. (1999). “Optimization of Resource Allocation and Leveling Using Genetic
Algorithms.” J. Constr. Engrg. Mgmt., ASCE, 125(3), 167-175.

Hiroyasu, T., Miki, M., Watanabe, S., Kamiura, J., and Okuda, T. (2002) “MOGADES: Multi-
Objective Genetic Algorithm with Distributed Environment Scheme.” Special Report, Doshisha
University, Kyoto, Japan.

Liberatore, M., Pollack-Johnson, B., and Smith, C. (2001) “Project Management in
Construction: Software Use and Research Directions” J. Constr. Engrg. Mgmt., ASCE, 127(2),
101-107.

Leu, S., and Hwang, S. (2001) “Optimal Repetitive Scheduling Model with Shareable Resource
Constraint.” J. Constr. Engrg. Mgmt., ASCE, 125(6), 420-427.

Leu, S., and Yang, C. (1999) “GA-Based Multicriteria Optimal Model for Construction
Scheduling.” J. Constr. Engrg. Mgmt., ASCE, 127(4), 270-280.

Li, H. and Love, P. (1997) "Using Improved Genetic Algorithms to Facilitate Cost
Optimization," J. Comp. Civ. Engrg., ASCE, 13(3), 233-237.

Page 10 of 10

Li, H., Cao, J., and Love, P. (1999) “Using Machine Learning and GA to Solve Time-Cost
Trade-Off Problems.” J. Constr. Engrg. Mgmt., ASCE, 125(5), 347-353.

Mattila, K. and Abraham, D. (1998) "Resource Leveling of Linear Schedules Using Integer
Linear Programming," J. Constr. Engrg. Mgmt., ASCE, 124(3), 232-244.

Maxwell, D., Back, E. and Toon, J. (1998) "Optimization of Crew Configuration Using
Activity-Based Costing," J. Constr. Engrg. Mgmt., ASCE, 124(2), 162-168.

Pacheco, P. S. (1998) “A user's guide to MPI,” Technical report, Department of mathematics,
University of San Francisco, San Francisco, CA.

Quinn, M.J. (2004). Parallel Programming in C with MPI and OpenMP, McGraw Hill, New
York, NY.

Reed, P., Minsker B. S., and Goldberg, D. E. (2002). "Simplifying Multi-objectiveOptimization:
An Automated Design Methodology for the Nondominated Sorted Genetic Algorithm-II."
Water Resources Research, Submitted.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J. (1998). MPI: The Complete
Reference, Volume1, The MPI Core, Massachusetts Institute of Technology, Cambridge, MA.

Sziveri, J., and Topping, B. (2000) “Transient Dynamic Nonlinear Analysis Using MIMD
Computer Architectures.” J. Comp. Civ. Engrg., ASCE, 14(2), 79-91.

Thakur,R., Gropp,W., and Lusk, E. (1997) “Users Guide for ROMIO: A High-Performance,
Portable MPI-IO Implementation.” Technical Report ANL/MCS-TM-234, Mathematics and
Computer Science Division, Argonne National Laboratory, Chicago, IL.

Watanabe, S., Hiroyashu, T. and Miki, M. (2002) “Parallel Evolutionary Multi-Criterion
Optimization for Block Layout Problems,” Special Report, Doshisha University, Kyoto, Japan.

Zitzler, E., Laumanns, M., and Thiele, L. (2001) “SPEA2: Improving the Strength Pareto
Evolutionary Algorithm.” TIK-Report 103, Swiss Federal Institute of Technology (ETH),
Zurich, Switzerland.

