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Summary 
Indentation experiments have been carried out over the past century to determine hardness of 
materials.  Modern indentation machines have the capability to continuously monitor load and 
displacement to high precision and accuracy.  In recent years, research interests have focussed 
on methods to extract material properties from indentation load-displacement curves.  
Analytical methods to interpret the indentation load-displacement curves are difficult to 
formulate due to material and geometric nonlinearities as well as complex contact interactions.  
In the present study, an artificial neural network model was constructed for interpretation of 
indentation load-displacement curves.  Large strain-large deformation finite element analyses 
were first carried out to simulate indentation experiments.  The data from finite element 
analyses were then used to train the artificial neural network model.  The artificial neural 
network model was able to accurately determine the material properties when presented with 
load-displacement curves which were not used in the training process.  The proposed artificial 
neural network model is robust and directly relates the characteristics of the indentation load-
displacement curve to the elasto-plastic material properties. 

1 Introduction 
Instrumented sharp indentation tests are widely carried out for mechanical characterization of 
materials.  Traditionally, indentation tests are carried out to determine the hardness of the 
materials.  Modern indentation machines have the capability to continuously monitor load and 
displacement to high precision and accuracy.  Recent research efforts focus on the interpretation 
of indentation load-displacement curves to extract the other basic mechanical properties, such as 
Young’s modulus, yield strength and strain-hardening exponent.  Doerner and Nix (1986) and 
Oliver and Pharr (1992) pioneered methods to extract Young’s modulus of materials from the 
unloading part of indentation load-displacement curves.  Subsequently, Cheng and Cheng 
(1998, 1999) derived a set of dimensionless functions to relate the characteristics of the 
indentation load-displacement curve with the elasto-plastic properties of the material.  Dao et al. 
(2001) proposed a new set of dimensionless functions and a forward and reverse analysis 
scheme based on extensive finite element simulations.  Swaddiwudhipong et al. (2004) 
demonstrated that the load-displacement curves from dual indenters are essential for unique 
recovery of the three elasto-plastic material properties. 

In the present study, an artificial neural network (ANN) model is constructed for material 
characterization based on dual sharp indenters.  The numerical data from finite element analyses 
are used for training and verification of the ANN model.  The proposed artificial neural network 
model is robust and accurately relates the characteristics of the indentation load-displacement 
curve to the elasto-plastic material properties. 



Page 2 of 6 

2 Finite element simulation of indentation test 
Large strain and large deformation axisymmetric finite element analyses were carried out using 
ABAQUS, a commercial finite element software.  Conical indenters with half-angles of 60.0° 
and 70.3° are modelled as rigid bodies in the finite element models.  As the effect of friction is 
negligible for any indenters with half-angle larger than 60° (Bucaille et al. 2003), frictionless 
contact is assumed in the present finite element model. 

Materials obeying power law strain-hardening were considered in this study.  For such 
materials, the uniaxial true stress-true strain relationship can be expressed as  

(1a) 

 

(1b) 

In Eq.(1), E is the Young’s modulus, Y the yield stress, R the strength coefficient and n the 
strain-hardening exponent. Enforcing continuity at σ = Y gives 

 

(2) 

 

The elasticity effect of the indenter can be considered in the analysis through the replacement of 
the actual Young’s modulus, E of the targeted materials by a reduced Young’s modulus, 
expressed in Eq.(3) (Giannakopoulos and Suresh 1999; Dao et al. 2001; Chollacoop et al. 2003). 

 

   (3) 

 

In Eq.(3), E* is the reduced Young’s modulus, Ei and νi are the Young’s modulus and Poisson’s 
ratio of the indenter respectively.  A constant Poisson’s ratio of 0.33 is used throughout this 
study. 

3 Fundamental aspects of load-displacement curves 

 
Figure 1: Schematic representation of a typical load-displacement curve 
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A typical load-displacement curve in an indentation experiment is shown in Fig.(1).   

3.1 Loading curve 
The loading part of an instrumented sharp indentation generally follows Kick’s Law which can 
be expressed as  

(4) 

where P is the indentation load, h the penetration depth measured from the surface and C a 
constant curvature. 

Based on cavity expansion analogy, the following relationship between C and the three material 
parameters (E*, Y, n) can be established.   

 (5) 

 

where θ is the half-angle of the indenter.   

Eq. (5) is consistent with the relationship derived by Cheng and Cheng (1998) using 
dimensional analysis. 

3.2 Relationship between indentation work and total work done 
Cheng and Cheng (1998) derived the following dimensionless function. 

 

(6) 

 

where WT is the area under the loading curve and WU the area under the unloading curve.   

Denoting (WT – WU) by WR and for a particular value of Poisson’s ratio and half-angle of the 
indenter, Eq. (6) becomes 

   

(7) 

4 Artificial Neural Network Model 

4.1 Model Definition 
For θ = 60.0° and 70.3°, Eqs. (5) and (7) yield respectively 

 

(8) 

 

 

(9) 

 

 

∏ ⎟
⎠
⎞

⎜
⎝
⎛=

−
ω

T

UT ,
E
Y

W
WW

θν ,

2ChP =

,n)
Y
E(f

Y
C *

, θ1=

,n)
Y
E(f

Y
C *

.,
.

°
°

= 0601
060

,n)
Y
E(f

Y
C *

., 
.

°
°

= 3701
370



Page 4 of 6 

)(3

3701

0601

370

060 ,n
Y
Ef

,n)
Y
E(f

,n)
Y
E(f

C
C *

*

.,

*

.,

.

. ==

°

°

°

°

(10) 

 

 

 

(11) 

 

Dividing Eq.(8) by Eq.(9) leads to Eq.(12). 

 

(12) 

 

 

It has been shown earlier (Swaddiwudhipong et al. 2004, Tho et al. 2004) that the reverse 
analysis based on dual sharp indenters lead to unique solution of E*/Y and n.  Therefore, there 
exists a one-to-one mapping of (C60.0°)/(C70.3°), (WR/WT) 60.0° and (WR/WT) 70.3° to E*/Y and n.  Two 
artificial neural networks, denoted as ANN-1 and ANN-2, are constructed for the reverse 
analysis of instrumented indentation results.  ANN-1 is constructed to map (C60.0°)/(C70.3°), 
(WR/WT) 60.0° and (WR/WT) 70.3° to E*/Y and n while the mapping of E*/Y and n to (C60.0°/Y) and 
(C70.3°/Y) is handled by ANN-2.  The solution procedure is summarized in the flowchart shown 
in Fig.(2).  From the indentation load-displacement curves of both indenters, the quantities 
C60.0°, C70.3°, (WR/WT)60.0° and (WR/WT)70.3° can be evaluated.  By providing the values of these 
quantities into ANN-1, the ratio of E*/Y and n can be established.  The results are then 
substituted into ANN-2 to determine (C60.0°/Y) and (C70.3°/Y).  Once C60.0° and C70.3° are known, Y 
can be calculated from either (C60.0°/Y) or (C70.3°/Y).  Consequently, E* can be evaluated from the 
ratio of E*/Y established earlier.  The actual value of Young’s modulus, E, can then be obtained 
from Eq.(3).   

 
Figure 2:  Flowchart illustrating the solution procedure 

4.2 Model Construction 
Back-propagation multilayer feedforward ANNs (ANN-1 and ANN-2) were created using the 
Neural Network Toolbox in Matlab 6.5 package.  Both ANN-1 and ANN-2 comprise the input 
layer, a hidden layer and the output layer.  The number of neurons in the input and output layers 
of the ANNs are identical to the number of input and output parameters respectively while the 
number of neurons in the hidden layer of the neural network is calibrated during the training and 
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validation process.The tangent sigmoid transfer function is used in the hidden layer while the 
linear transfer function is assigned to the output layer.   

4.3 Training and Validation 
The ANNs are trained by introducing a set of examples of proper network behaviour to the 
ANNs.  During training, the learning rule is used to iteratively adjust the weights and biases of 
the network in order to move the network outputs closer to the target values by minimizing the 
network performance indicator.  The Levenberg-Marquardt training algorithm, which has a 
higher rate of convergence, is used for the training of both ANN-1 and ANN-2.   

The data for training and validation of ANN-1 and ANN-2 were obtained numerically through 
500 large strain, large deformation finite element analyses encompassing a domain of E*/Y from 
10 to 1000 and n varying from 0.0 to 0.6 for each of the conical indenters.  Out of the 500 sets 
of input and output data, 400 sets were randomly assigned as training data while the remaining 
100 sets were used for validation purpose.  The mean square error, MSE, of the network outputs 
and the target values is used as the network performance indicator.    The characteristics of 
ANN-1 and ANN-2 are summarised in Table 1. 

Table 1: Characteristics of ANN-1 and ANN-2 

Mean Square Error 
 Range of 

outputs 

Number of 
neurons in the 
hidden layer Training Validation 

ANN-1 0 – 1 30 1.398E-05 4.609E-05 
ANN-2 10-610 24 4.555E-02 5.215E-02 

5 Results and Discussion 
Finite element analyses were carried out to simulate indentation experiments on Al6061 and 
iron.  The typical elasto-plastic material properties of these materials are used as inputs to the 
finite element model.  The finite element results are summarised in Table 2.  It should be noted 
that these sets of finite element results were not used in the training and validation process 
described in Section 4.3. 

Table 2:  Summary of finite element results for Al6061 and iron 

Conical indenter with half-angle of 
60.0 degree  

Conical indenter with half-angle of 
70.3 degree  Material 

C60.0° (GPa) C70.3° (GPa) (WR/WT)60.0° (WR/WT)70.3° 
Al6061 10.740 27.200 0.952 0.921 
Iron 24.598 55.513 0.949 0.925 
 

The material properties predicted by the artificial neural network model are shown in Table 3 
together with the actual material properties.  It can be observed from Table 3 that the proposed 
artificial neural network model predicted the elasto-plastic material properties reasonably 
accurately.   

Table 3: Prediction from artificial neural network model 

 Al6061 Iron 
E* (GPa)   
Actual 72.363 170.789 
Predicted 72.700 169.963 
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E (GPa)   
Actual 69.000 180.000 
Predicted 69.343 178.971 
   

Y (MPa)   
Actual 275.000 300.000 
Predicted 276.320 297.880 
   

n   
Actual 0.050 0.250 
Predicted 0.049 0.253 

6  Conclusion 
The use of artificial neural networks enable the direct mapping of the characteristics of the 
indentation load-displacement curve to the elasto-plastic material properties.  The proposed 
artificial neural network model can accurately predict the elasto-plastic properties of the 
material based on the indentation load-displacement curves of two conical indenters with 
different half-angles.     

7 References 
Bucaille, J.L., Stauss, S., Felder, E., Michler.  2003.  Determination of plastic properties of 
metals by instrumented indentation using different sharp indenters.  Acta Materialia 51:1663-
1678. 

Cheng, Y.T., Cheng, C.M., 1998.  Scaling approach to conical indentation in elastic-plastic 
solids with work hardening.  Journal of Applied Physics 84:1284-1291. 

Cheng, Y.T., Cheng, C.M. 1999.  Scaling relationships in conical indentation of elastic-
perfectly plastic solids.  International Journal of Solids and Structures 36:1231-1243. 

Chollacoop, N., Dao, M., Suresh, S. 2003.  Depth-sensing instrumented indentation with dual 
sharp indenters.  Acta Materialia 51:3713-3729. 

Dao, M., Chollacoop, N., Van Vliet. K.J., Venkatesh, T.A., Suresh, S. 2001.  Computational 
modelling of the forward and reverse problems in instrumented sharp indentation.  Acta 
Materialia 49:3899-3918. 

Doerner, M.F., Nix, W.D. 1986.  A method for interpreting the data from depth-sensing 
indentation instruments.  Journal of Material Research 1:601-609. 

Giannakopoulos, A.E., Suresh, S. 1999.  Determination of elastoplastic properties by 
instrumented sharp indentation.  Scripta Materialia 40:1191-1198. 

Oliver, W.C., Pharr, GM. 1992.  An improved technique for determining hardness and elastic 
modulus using load and displacement sensing indentation experiments.  Journal of Material 
Research 7:1564-1583. 

Swaddiwudhipong, S., Tho, K.K., S., Liu, Z.S., Zeng, K.  2004. Material characterization based 
on dual indenters.  (submitted for publication). 

Tho, K.K., Swaddiwudhipong, S., Liu, Z.S., Zeng, K.  2004. Uniqueness of reverse analysis 
from conical indentation tests.  (submitted for publication). 


