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Abstract 

This work is based on the concept that the structure of a city can be defined by six basic 

urban patterns. To enable more complex urban planning as a long-term objective I have 

developed a simulation method for generating these basic patterns and for combining them 

to form various structures. The generative process starts with the two-dimensional organi-

sation of streets followed by the parceling of the remaining areas. An agent-based diffu-

sion-contact model is the basis of these first two steps. Then, with the help of cellular au-

tomata, the sites for building on are defined and a three-dimensional building structure is 

derived. I illustrate the proposed method by showing how it can be applied to generate 

possible structures for an urban area in the city of Munich.   

 

 

Keywords: multi-agent systems, cellular automata, generative design system, diffusion lim-

ited aggregation, diffusion-contact model, urban modeling. 

 

 

 

 



Arbeitspapiere – 3 – Informatik in der Architektur – Bauhaus-Universität Weimar 
 

2 
 

1. Introduction 

Most of the urban structure models published are based on a scale that does not reach 

down to the scale of architecture and architectural spaces. The majority of models take an 

economist’s or geographer’s point of view and see urban structures as the result of complex 

interactions of individual, ecological and economic relationships. 

As one of the fundamental and most important contributions to a generative theory of ar-

chitectural space we can consider Bill Hillier’s alpha syntax model of space (Hillier et al, 

1976), further developed in “The social logic of space” (Hillier and Hanson, 1984, page 52-

81), where the morphological results of a set of simple rules (syntaxes) are explored to de-

rive simple grammars of form for developing agglomerations of buildings. Other relevant 

works are “The geometry of environment” (March and Steadman, 1971) where effects of 

geometry on spatial configurations were examined. On the scale of individual buildings we 

have to mention the work of Mitchell (1990) as well as Stiny and Gips’ (1971) explorations 

of possible combinations of architectonic elements, summarised under the designation 

“Shape Grammar”.  

Inspired by the research mentioned above and the work of Watanabe (2002; 2003), Coates 

et al (1996), Erickson and Lloyd-Jones (1997) and the research of the collaborative research 

centre SFB 230 (Teichmann and Wilke, 1996), we have developed a method for combining 

the generative approach with self-organising principles. In particular, Eda Schaur’s (1992) 

contribution regarding non-planned settlements provides many pointers for describing bot-

tom-up rules, e.g. how elements organise themselves to form more complex structures. As 

far as possible we have tried to use the bottom-up approach, but not all urban develop-

ment processes can be described with this method, which is why we have introduced re-

strictions on different levels to control the system globally using top-down techniques. A 

flexible combination of both, bottom-up and top-down methods allows the simulation of a 

wide range of urban patterns and development processes under different conditions. 

A central question of our research was to examine how particular structure formations arise 

in cities. For this we needed to identify the basic types of urban patterns, and here we have 

drawn on Klaus Humpert’s (1992; 1997) concept of six “Feldtypen” (field types): 

“Nukleus”, “Cluster”, “Wegelagerer”, “Ausleger”, “Vernetzer”, and “Plan” (figure 1). 

Adapted from Humpert the complete spectrum of city structures can be produced by com-

bining these basic field types.  
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A further important task is to define those elements to which the urban phenomena can be 

reasonably reduced with the intention of developing algorithms for reproducing these phe-

nomena. Linked to this are the respective combination rules of elements required in order 

to describe the urban processes for producing different structural qualities. We organize the 

generating process on four thematic levels to develop several strategies for the respective 

requirements. This allows us to explore the connections between the elements and the 

rules of their interaction. 

The intention of this work is to examine how the principles that underlie existing urban 

structures can be transformed into algorithms and mathematical parameters to achieve a 

new comprehension of urban development. The results provide an experimental basis for 

generating various structures and designs that exhibit different attributes and characteris-

tics. Furthermore the system we have developed allows us to produce alternative solutions 

for the same design problem very quickly. 

The technical basis for the experiments and examinations is the programming (or scripting) 

language Visual Basic for Applications (VBA). The application used was AutoCAD 2005 

which provides a CAD environment in which the generated results can be easily visualised 

and uses a standard vector format that can be used for further purposes without data con-

version problems. The disadvantages are the slow execution of the simulations and the dif-

ficulty of implementing an intuitive and interactive user interface within AutoCAD.  

2. The six basic urban patterns 

Figure 1 shows all six “Feldtypen” (field types) put forward by Humpert. The six types are 

described at a scale of approximately 1:10.000 and using these basic types it is possible to 

construct all forms of human settlement. The individuality of a city is not based on the 

creation of new types, but on the individual arrangement of universal ones. They are com-

patible in an arbitrary order and mixture ratio. We shall describe each of the individual field 

types in more detail (Humpert, 1992, pages 88-96). 

 
Figure 1: The Six “Feldtypen”. From left to right: “Nukleus”, “Cluster”, “Wegelagerer”, “Ausleger”, 
“Vernetzer”, “Plan” (Humpert, 1992) 
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The “Nukleus” (nucleus) – a point type 

The nucleus marks the transition from a house to the city. A nucleus is an autonomous and 

strong building, for example a small group of houses, restricted primarily to a larger plot. In 

this case, a typical site development pattern of houses along a street is not exhibited. For 

groups of buildings an inner courtyard assumes this function. A nucleus often marks the 

initialisation of later settlement activity, but it can also prevent such activities.  

The “Cluster” (cluster) – a stochastic field type 

In this type, none of the three basic elements, site development, parcelling, and buildings, 

is fixed from the beginning. A more or less random initial distribution of individual build-

ings determines the further steps. The development process of a cluster structure can be 

described in three phases:  

(a) Every building claims an “area” around itself, gradually pushing back the public space 

until it eventually consolidating to a plot; (b) this process of replacement results in a site 

development system reduced to a linear structure. (c) In the end the site development sys-

tem can not be reduced any further without collapsing the complete system and it has a 

much higher resistance than the adjacent parcels. This process of emergence ultimately 

leads to a logical system of site development, of division of lots, and buildings. Examples of 

this kind of development pattern are common in many old towns with twisty streets and in 

the spontaneous, unplanned settlements on the edge of Third World cities.     

The „Wegelagerer“(highwayman) – a passive linear type 

This type embodies a very economical form of settlement. Sites are built up adjacent to 

main and minor roads without a development plan. Through the successive addition of one 

house beside the other a linear building structure arises. Because there are no development 

costs at the beginning, this type is very economical, but this can change if later improve-

ments to the road networks or extension of the settlement into the hinterland are prevent-

ed by the existing structure. 

The “Ausleger” (boom) – an active linear type 

In contrast to the “Wegelagerer” (highwayman) where the road already exists, for this type 

a public or private road has to be built especially. Normally this new street is more or less 

perpendicular to an existing main road and utilises a stock of sites. This type can be newly-

created on a single large plot of land or it can make use of old paths. 
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The „Vernetzer“(interlink) – an interactive field type 

This type is usually created on the basis of older paths or overland routes that are iteratively 

regulated step by step, or through the insertion of single new streets to interlink old struc-

tures. Some forks, “slopes” and crooked routes which can be seen most clearly in overland 

roads are gradually eliminated, as the increasingly dense packing of plots eventually forces 

their own proportion back on the site development network. 

The gradual transformation to a more orthogonal ground plan for the settlement structure 

is not at all the result of a planning intention. The right angle results from the dynamics 

inherent to systems of growing settlements. Since this process never comes to an end, the 

system of site development still exhibits small disturbances in many locations. The “Vernet-

zer” is the direct transformation of farmland and grazing land into building land.  

The „Plan“(plan) – a deterministic field type 

For this type man appears as a planner. He defines the site development, the parcelling 

plan, and the structure of the buildings. In extreme cases this determination extends as far 

as the architectural design of each building. If the planning specification confines itself to 

site development only the future settlement can be purely stochastic, i.e. carried out in an 

individual style. But every plan runs the risk that it will be never put into practice com-

pletely and will remain simply a limbless body. 

3. The structure of the simulation model 

To facilitate the clear processing of the complex task of generating urban structures with 

the help of simulation models, four levels are introduced as sub-models to deal with gen-

eral information, site development, buildings, and optimisation. The information level can 

be considered as a dynamic database for storing and retrieving local information. Our main 

activities concentrate on the development of the following two levels. Based on a contact 

model, the concept of the development level is to examine possibilities for generating dif-

ferent “Feldtypen” using road networks. For the building level, cellular automata are used 

to design two and three-dimensional building structures. At the optimisation level, meth-

ods for measuring and analysing the generated structures are presented and a conceptual 

draft for optimising structures is mentioned. On all levels the abstract simulation world 

consists of a rectangular lattice of cells. 
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3.1. Information Level 

The information level is firstly a means of processing information that cannot be reduced to 

basic elements. For example environmental information about vegetation, topography, 

conditions of the soil and the weather as well as statistical information about population, 

demography, crime, and social structure can be stored as aggregated data in the cells of the 

lattice. Secondly, this level can be considered as an interface to geographic and economic 

models on a larger scale. In principle this level is equivalent in function to a loose coupling 

with a Geographic Information System (GIS) (Wegener, 2005). The models developed at 

other levels can access the database to adapt their steering parameters and manipulate the 

stored values.  

 
Figure 2: The four basic levels of the simulation model. 

3.2. Site Development Level 

‘Streets are major and houses are minor’ – this old saying seems to be true even today. 

(Watanabe, 2002) 

The organisation of the road network is one of the main structuring principles of a city, 

closely related to the subdivision of the urban area into individual parcels. By controlling 

the simulation of an agglomeration process such as diffusion limited aggregation (DLA) 
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(Flake, 1998, pages 71-75), structures with different characteristics can be generated and 

identified as the aforementioned “Feldtypen”. All kinds of urban structures should be real-

isable by combining these types. 

In his Induction Cities project, Watanabe (2002) describes the positive effect of a maze of 

winding paths in the old parts of towns in contrast to settlements in a raster layout with 

streets running in a straight line. In contrast to Watanabe, in our assessment we want to go 

beyond a comparison of what are beautiful and what are functional streets. For us a meth-

od for comparing the total length of a road network with the necessary length of detours 

required to reach a destination in such a system seems more interesting (Schaur, 1992). The 

structure of a site development system is directly related to its land and energy consump-

tion for its construction or the use of the system. 

3.2.1. Diffusion-contact model 

Our examinations at this level begin with a diffusion limited aggregation (DLA) process 

which can be denoted as contact model (Batty, 2005, pages 47-51). In DLA processes par-

ticles follow random paths in Brownian motion until they cluster together to form aggre-

gated structures (Witten and Sander, 1981). DLA is applicable in any system where diffu-

sion is the primary means of transport in the system. It can be observed in systems such as 

electrode position, Hele-Shaw flow, mineral deposits, and dielectric breakdown, where a 

structure gradually grows over the course of time by adding particles to an existing struc-

ture.  

To transfer this process to a computer simulation, a two dimensional regular lattice of 

squares is used as a Cellular Automata (CA) (Toffoli and Margolus, 1987). At a Cellular Au-

tomata Z each one of the i cells of the lattice gets assigned an index H = {1, 2,…, i} and can 

be in one of k possible states SH = {S1, S2,…, Sk}. For the simulation of a DLA at least three 

states k=3 have to be defined. First, for empty cells the state SH
1 = 0, second for occupied 

cells where a particle is aggregated the state SH
2 = 2, and third for cells where an aggrega-

tion is possible the state SH
3 = 1 (candidate sites). Further we need to represent the parti-

cles in the simulation. For this purpose Brownian agents (Schweitzer, 2003) are introduced. 

These m agents A = {A1, A2,…, Am} can move freely across the cellular space and interact 

with cells located at the same position. Normally it is useful to restrict the movement of the 

agents on a CA to discrete steps from cell to cell. Following Portugali (2000) the complete 

system of CA and interacting free agents can be denoted as “Free Agents in a Cellular 

Space” (FACS). Lastly, for a DLA simulation a transformation rule F for the cells is necessary. 
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F can depend either on the states of the cells in the neighbourhood U(H) of cell H, thus 

SU(H) denotes the set of states of the neighbouring cells, or F depends on the position PA of 

agent A. Now, we can write down the general transition rule of our FACS model for a sim-

ple DLA process: 

SH
(t+1) = Ft ( SH(t), SU(H)(t), PA(t) ).       (3.1) 

In summary this means that the state S of cell H in the next discrete time step t+1 depends 

on the transition rule F at time t. The transition rule includes the state S of cell H at time t, 

the neighbourhood’s configuration SU of cell H at t and the position P of agent A at t. In the 

same way the movement rule L for the position of agents A can be written: 

 PA(t+1) = Lt(SH(t), PA(t), SU(H)(t), PU(H)(t)),      (3.2) 

where PU(H)(t) restricts the possible locations where an agent A can move to randomly at the 

next time step. The states S of the cells H indicate if the agent can aggregate at a location, 

or if the agent is allowed to enter a certain cell at the next time step. 

With this formal equipment we can operationalise the model’s behaviour in more detail. To 

start the process we have to place at least one agent at a random chosen location Hb at the 

border of the CA lattice and define at least one cell as aggregated. For this first example we 

take the cell Hc in the center of the field as the seed (the light grey cell in figure 3, left) and 

all other cells i are assumed to be empty. The initial conditions for the most basic process 

of DLA can now be written as 

PA(0) = random(Hb), SHc(0) = 2, SHi(0) = 0, i c  .     (3.3) 

In the next time step, the transition rules of the CA and the agent(s) are executed. We need 

to first define the neighbourhood U(H). Here we have chosen the Moore neighbourhood 

containing the eight surrounding cells of the cell in question (the eight dark grey cells in 

figure 3, left). A cell changes its state from 0 to 1 under the following condition: 

 SH(t+1) = 1,  if  ( SH(t)=0  and  CU(H)(t)>0 ),      (3.4) 

where 

   CU(H)(t) =  1| ( ),  2G

G

G U H S         (3.5) 

is the counter of the crystallised cells with state S=2 in the neighbourhood of cell H. Con-

sequently an aggregation is possible only where at least one cell in the neighbourhood has 
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already been crystallised. To change a cell’s state from 1 to 2 a further connection condi-

tion is defined by: 

 SH(t+1) = 2, if (SH(t) = 1  and  PA(t) = H(t)).      (3.6) 

If condition (3.6) is met, the current agent is deleted and a new one is created at random 

(Hb). After the execution of the CA the agent(s) moves one random step across the cellular 

field: 

PA(t+1) = random(PU(H)(t)),         (3.7) 

where the position of an agent is selected randomly from the adjacent cells into which it is 

allowed to move in one step. In this example the same eight Moore neighbourhood cells 

U(H) are taken for PU(H) as for the CA. Figure 3 shows the aggregation of an agent after a 

random walk (on the left) at the point where it enters the neighbourhood of an already 

crystallised cell, and the resulting change of the cell’s state from 1 to 2 (on the right). 

 
Figure 3: The contact rules for the diffusion limited aggregation (DLA) process.  
 

An example of the result of the DLA process described can be seen in figure 4a. A useful 

adaptation of the connection condition (3.6) is to introduce a probability ρ for the connec-

tion of a particle: 

 SH(t+1) = 2, if (SH(t) = 1  and  PA(t) = H(t)  and  ε < ρ),    (3.8) 

where ε is a randomly chosen value between 0 and 1. At ρ=1 a particle is connected every 

time if it crosses a cell with state 1. Accordingly the probability is relatively low that a parti-

cle will reach the centre of a cluster without connecting beforehand. Because of this, the 

growth of the cluster occurs mainly at the edge of the structure. If the connection probabil-

ity ρ decreases, more particles can pass the edge and growth also takes place within the 

cluster (figure 4b). The structure at figure 4c is generated by placing two initial cells and 

revokes the restriction that agents can start their random walk at the border of the cellular 

field only. In this case two growing clusters can merge into one structure. 
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Figure 4: Three resulting structures of the DLA process: a) a field with 200 x 200 cells, ρ=1 and 3127 
connected elements; b) a field with 100 x 100 cells, ρ=0,1 and 1650 connected elements; c) a field 
with 100 x 100 cells, ρ=0,5, the starting location of an agent PA(0) is not restricted to the cells Hb at 
the border and all random walks can start at any cell Hi. 

3.2.2. Generative methods for various road networks with the help of the field type concept 

How can we progress from the abstract DLA process to a growing network of streets and 

roads? To answer this question we start at the scale of the city as a whole. It is possible to 

describe the approximate development of a city over time using a CA model and a process 

adapted from the DLA (Batty and Longley, 1994). Using a similar approach we undertake a 

first attempt and begin with an empty landscape in which a system of roads begins to grow 

step by step. To transfer the DLA structure to a network of roads, the crystallised cells are 

considered as nodes N (crossing) and are connected by an edge E (street) of length d to 

other nodes that are located inside a circle with radius r. The connecting rule is illustrated 

in figure 5a. The process starts with N0 = SHc(0) = 2 and the nodes N1 until N4 are con-

nected one after the other by drawing an edge to N0 only if d > r. 

 

Using this method we can obtain structures such as those illustrated in figure 6. The prob-

lem, clearly evident in the picture on the right of figure 6, is the high density of connecting 

edges in the road network for relatively small values of ρ. To solve this problem another 

restriction has to be introduced. If a new node N5 (figure 5b) is connected to a current 

cluster (with N0 – N4 and still without N6), an edge is drawn to one of the nearest nodes 

(N0) and then the shortest path is calculated to the other connection candidates. The 

 
Figure 5: The rules: how to build a network of roads on the basis of a DLA process. 
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nodes that one has to pass through to reach a connection candidate via the current graph 

are counted in C. To compute the shortest paths the A* algorithm is used (Russel and 

Norvig, 2002). To discuss this algorithm in greater detail would go beyond the scope of this 

article. Now we can write the condition to draw an edge E as: 

 E(Ni, Nj)  If (d < r  and  C > X),        (3.9) 

where X is the minimum of required nodes between a new node and a connection candi-

date before a new edge is drawn. In the example in figure 5b X=3. By manipulating the 

three main parameters U(H), the neighbourhood of H where a further connection is possi-

ble, and the probability ρ to regulate the density of the growing cluster, as well as X to con-

trol the frequency of the connections, we can generate global road networks with various 

characteristics. In general, the possible road networks can be classified in three categories. 

First, a tree structure with dead-end streets, second a network where each node is con-

nected at least two other nodes, and third a mixture of the first two categories where some 

branches are dead ends, which can be denoted as a semi-lattice (Alexander, 1965). 

 
Figure 6: Possible road networks without restriction for the connections. 

Now, if we change the scale from the city as a whole to a district or neighbourhood and 

consider a basic road network as pre-determined either from the generated network above 

or from existing older paths or overland routes, we can work out the generative methods of 

the field types in more detail. The first type to consider is the simplest one, the “We-

gelagerer”. To generate this type we just need to consider the pre-determined roads as 

crystallised seeds which different agents can connect to using the connection condition 

(3.6). After connecting, the agents occupy a plot of land (figure 7). For the occupation pro-

cess there are various possibilities. For example, the agents can keep a site of a given size. 

This method is similar to a kind of Tetris game (figure 7b). Alternatively, after all agents 

have been connected they can expand the plot they occupy by spreading to the neighbour-

ing cells step by step until they adjoin other expanding plots (figure 7a). The areas with the 

same colour can be considered as “Nucleus” types. The widening process is described in 

the text below (3.14 – 3.17). 
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Figure 7: Generated “Wegelagerer”: The agents connect to pre-determined streets and occupy a plot 
of land. 

However, if the agents are allowed to build in the hinterland, the site development is miss-

ing (figure 7c). The “Ausleger” is the obvious type for generating secondary site develop-

ment. Two different methods are developed for this type. The logic of the first is similar to 

the “Wegelagerer” system, but in this case the agents can not only connect to streets as 

crystallised seeds but also to the neighbourhood of plots of land already occupied by ag-

gregated agents. As before the connection condition (3.6) is applicable for this type. After 

an agent is aggregated and has occupied a site, the site development is constructed by 

drawing the shortest path to an existing street, again using the A* algorithm. Figure 8 

shows the resulting structures with different plot sizes (figure 8a and 8b) and with all plots 

coloured blue (figure 8c). 

 
Figure 8: Generated “Ausleger”. Method 1: The new aggregated sites are developed by new streets 
and are thereby connected to the next road. 

In order to find a way of moving on to the “Vernetzer” type, we introduce a second meth-

od of generating “Ausleger” types. In this case, the generative logic is inversed: aggregated 

agents no longer represent a site, but the extension of a street flanked by plots of land on 

both sides. In addition to the three cell states previously described, empty, occupied 

(street), and candidate sites for possible aggregation, a fourth state SH
4 = 3 for a plot of land 

is added. The condition for a cell to change its state to “plot of land” is similar to (3.4): 

 SH(t+1) = 3,  if  ( SH(t)=0 and  LU(H)(t)= 3 ),     (3.10) 

where 
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   LU(H)(t) =  1| ( ),  2G

G

G U H S        (3.11) 

is the counter of the street cells with state S=2 in the eight Moore neighbourhood cells of 

the cell under consideration H. The order of execution of the different rules per time step is 

as follows: first check if an agent can connect (3.8), second see if the cells can be converted 

to plots of land (3.10), and third find the cells where further aggregation is possible. For the 

last rule the counting condition (3.5) has to be modified to 

  CU(H)(t) =  1| ( ),  (2,  3)G

G

G U H S  .     (3.12) 

This alteration means that not only streets are counted but also plots of land. As a last rule 

for a time step, the probability ρ for the connection of an agent at equation (3.8) has to be 

computed. Now, the probability ρ is defined locally for each cell and depends on the states 

of the neighbouring cells: 

 ρH(t) = 0,1  if    LU(H)= 3 otherwise 

 ρH(t) = 1     if   LU(H)< 3  otherwise     (3.13) 

ρH(t) = 0; 

LU(H)(t) =  1| ( ),  2G

G

G U H S  . 

These basic rules can be adapted to widen the area of the plots of land next to the roads. 

As a result, empty cells are considered and are assigned the state of the cells in the von 

Neumann neighbourhood when they are not empty. The von Neumann neighbourhood 

consists of the four adjacent cells in the north, east, south, and west directions. Finally 

those empty cells which have a cell with the state “plot of land” in their von Neumann 

neighbourhood can defined as candidates SH = 1 and are assigned the probability ρH = 0,1 

(figure 9a – c).  

 
Figure 9: a) – c) Generated “Ausleger” with method 2. New streets are generated by aggregation and 
are flanked by plots of land on both sides d) Generated “Vernetzer”. The open nodes are marked red 
and are connected by a street if they coincide near enough.  
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After all the previous modifications, it is now easy to derive the generative method for the 

field type “Vernetzer” from that of the “Ausleger” type. For this a new rule has to be added 

at the end of the calculations per time step. If a street cell has an empty or a candidate 

neighbour cell in its von Neumann neighbourhood it can be considered as an open node 

and we can look for other open nodes in a certain distance (analogous to the case in figure 

5, r > d). Two open nodes are connected by a new street if condition (3.9) is met. To iden-

tify the steps to the other open node under consideration, the street cells that one has to 

pass through to get from one node to the other are counted in C. The parameter X gives 

the minimum of required street cells between two open nodes before a new street is built 

(figure 9d). 

Finally we will also examine the “Cluster” type. For this the same principle as for the DLA 

process (3.3 – 3.8) is used for spatial arrangement. The only modification to the connection 

condition (3.6) is that the Moore neighbourhood under consideration U(H) is enlarged to 

radius r=5. This means that the neighbourhood now consists of 11 x 11 = 121 cells (figure 

10). After all agents have connected, they first use their individual agent index m to stamp 

a mark MH=m on the occupied cell. Afterwards the occupied plots (SH=3) are widened to 

the neighbouring cells step by step through diffusion until they adjoin with other widening 

plots: 

 SH(t+1) = 3,  if   ( SH(t)=(0 or 1) and  LU(H)(t) > 0 ),    (3.14) 

where 

LU(H)(t) =  1| ( ),  3G

G

G U H S  .      (3.15) 

The mark MH of the new plot cells is given by the average of their neighbouring plot cells: 

 MH(t+1) = 
U(H)

U(H)

C (t)

L (t)
,        (3.16) 

where 

CU(H)(t) =
( )

G

G U H

M

 .        (3.17) 

The street cells are generated between different plot cells as indicated by their different 
marks MH. The condition for a cell to change its state to a street can be written as: 

 SH(t+1) = 2,  if  
U(H)

H
U(H)

C (t)
M

L (t)
 ,      (3.18) 

where CU(H) is taken from (3.17) and LU(H) from (3.15). This change is independent of the 

state S(t) of the current cell.  
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The last field type “Plan” is not discussed here because the structure of streets and sites for 

this type is determined by a human planner. In the next section we use a raster grid as an 

example of a “Plan” type, where the positions of the streets are defined by the distance 

between them.  

 
Figure 10: Generated “Cluster”. The sites are placed by a DLA process and the streets are built be-
tween the sites. 

3.3. Building Level 

In the framework of this level we concentrate on the question of how the sites in a given 

road network can be built on to meet certain conditions. For this purpose a first step ex-

plores two-dimensional structures where cells are distinguished between the categories 

empty or built on. The two-dimensional structures form the basis for the generative meth-

ods of the three-dimensional building structures in the next step. Finally we briefly discuss 

some experimentation with the growth of “free“ three-dimensional structures. 

3.3.1. Two-dimensional structures 

At the building level only Cellular Automata are applied and the first task is to find appro-

priate rules for binary automata to produce results usable to fill an area with buildings. To 

examine the automata a formal description for counting rules and voting rules are intro-

duced. The voting rule means the kind of neighbourhood denoted above with U(H). In the 

following, if not otherwise stated, the eight cells Moore neighbourhood is used for U(H). 

The counting rule describes the condition for a cell to change its state. At binary automata 

there are only two states SH=0 for an empty cell and SH=1 for a built on cell. The explicit 

formulation of the counting rule is as follows: 

 SH(t+1) = 0,  if  (CU(H)(t) >= B1   or   CU(H)(t) <= B2),     

 SH(t+1) = 1,  if  (CU(H)(t) > B3  and  CU(H)(t) <= B4), 

SH(t+1) = SH(t), else. 

(3.19
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where  

 CU(H)(t) =
( )

G

G U H

S

 ,        (3.20) 

and Bn={ B1, B2, B3, B4} denotes the particular thresholds for a cell, if its environment is too 

densely occupied and the cell has to change to an empty state, or if there is potential and 

demand in the neighbourhood to expand the built on states and change the cell’s state to 

1. To abbreviate the spelling of the global counting rule R of CA the thresholds Bn can be 

summarised to R=B1B2B3B4. Using this formal equipment the exploration of automata which 

generate structures where each built on cell has at least one empty cell in its von Neumann 

neighbourhood can be documented. This restriction seems sensible to ensure enough light 

and air for each house. The initial state of an automaton is normally given by 

 SH(0) = random (0, 1),       (3.21) 

with the probability ρH(0)= 0,5 or 50% that at the outset a cell has either the state 0 or 1. 

The first automata under consideration has the rule R1=8114 and produces structures with 

a high density D=0.72 of built on cells. The density D is a measure of the ratio of built on 

cells to all cells. The problem with the structures resulting from rule R1 is that there are 

quite a lot of built on cells without a free cell in their von Neumann neighbourhood (figure 

11a). By altering the rule R1 to R2=7013 this difficulty is removed for nearly all cells as illus-

trated in figure 11b though the density is lowered to D=0.61. If the requirement for empty 

cells in the von Neumann neighbourhood of each cell rises to at least two empty cells, the 

rule R3=5012 is suitable if a further lowering of the density to D=0.46 is acceptable or de-

sirable. To produce structures with an even lower density the rule R4=3011 can be used 

resulting in D=0.37 (figure 11c). 

 
Figure 11: The illustrations show four different possibilities for filling an area with buildings, where 
the white cells are the empty ones with SH=0. The generative rules R and the densities D for the 
particular structures are: a) R1=8114, D=0.72; b) R2=7013, D=0.61; c) R3=5012, D=0.46; d) 
R4=3011, D=0.37. 
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If more rural structures are required the rules R5=4010 and R6=3010 are appropriate to 

generate structures with D= ~0.21 and D= ~0.10, but to achieve suitable results the initial 

probability has to be changed to ρH(0)= 0.3. In the acknowledgement at the end of this 

article the link to an online simulation tool is provided to enable interested readers to ex-

amine the automata rules and dynamics for themselves. 

For the next elaboration of the settlement structure two new states for the cells are intro-

duced. First, for the streets marked in yellow the state SH=2 is reserved and second, if in 

case during the generative process a 3 x 3 cells area without built on cells results by 

chance, theses cells are kept free during the further development by placing a red coloured 

cell with the state SH=3 in the midpoint. The counting rule remains the same as given in 

(3.19) for all cells with state SH=(0, 1), but (3.20) have to be changed to: 

 CU(H)(t) =  1| ( ),  1G

G

G U H S  .      (3.22) 

At setup, first the street cells are defined and afterwards the initial states of the remaining 

cells are set to: 

SH(0) = random (0, 1),  if  SH(0)   2.      (3.23) 

Once a cell has been set to a street state it cannot change its state any more. For the fur-

ther examinations the rules R2 and R3 are considered as most usable and are applied to a 

pre-determined grid of streets shown in the examples in figure 12. A main problem of the 

rectangular cell structure of the cellular automata used, beside the restrictions of the ge-

ometry itself, is to choose a reasonable size for the cells that is suitable at the same time for 

the streets, the buildings and the necessary space between the houses. Erickson and Lloyd-

Jones (1997) have presented a model with a more irregular combination of rectangular cells 

but the cell sizes are also the same for all elements. 

 
Figure 12: Building structures shown in blue inside a preset grid of yellow coloured streets, the emp-
ty or free cells are shown in white or green. a) A block structure generated with R2=7013; b) A struc-
tures with a lower density produced with R3=5012; c) R3 applied to a more fine-meshed grid of 
streets. 
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3.3.2. Three-dimensional structures 

The two dimensional structures of streets, built-on cells and free cells are the basis for the 

generative methods of three dimensional buildings. Therefore we need to expand the logic 

of the two-dimensional cellular automata to the third dimension. The counting rule can 

remain the same as (3.19), however, the considered neighbourhood has to be changed in 

the way that the cells at the floors above and below the current one are additionally in-

cluded as shown in the right hand image of figure 13. Thus in the third dimension the 

Moore neighbourhood contains 26 cells and the von Neumann neighbourhood 6 cells. The 

3D automata are binary ones with the states SH=0 for empty cells and SH=1 for occupied or 

filled cells. 

 
Figure 13: Configuration and terminology for a three-dimensional Cellular Automata (Krawczyk, 
2002) 

The initial configuration for a 3D automaton is given by transferring the built on cells from 

the two-dimensional lattice to the ground floor of the three-dimensional lattice by the rule: 

 SH0
3D = 1, if   SH

2D = 1, otherwise SH0
3D = 0.     (3.24) 

All cells at the upper floors are in state 0. Because the cells at the ground floor have no 

neighbouring cells in the floor below these cells are defined as empty. The same is valid for 

the uppermost floor and the cells above it as well as for the cells at the boundary in the 

north, east, south and west where the area is surrounded with street cells. The process 

starts at the first floor and can be bounded to a fixed maximum number of floors. Further 

restrictions for the 3D automata, for example not to fill cells above streets at all floors, are 

possible but not necessary. For the initial examination it has turned out that a combination 

of the Moore (horizontally) and the von Neumann neighbourhood (vertically) is most usa-

ble where the eight cells on the same floor and the one cell below the current one are con-

sidered as U(H). With this voting rule the investigated counting rule to transfer the 2D 

block structures generated with rule R2 to an appropriate 3D structure is R1
3D= 6114. The 
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resulting building structures show some variations, but in principle they can be considered 

as a good and interesting translation of the basic two-dimensional patterns (figure 14, up-

per row). 

  

 
Figure 15: Three dimensional cellular automata (grey and blue) with experimental counting rules can 
develop freely in space and are only restricted by streets or dynamic cells (red) which have to be 
kept free and are created if two automata collide. a) R3

3D= 6124; b) R3
3D= 6124, restricted to the 

magenta coloured cells; c) R4
3D= 6015, after 8 generations; d) R5

3D= 2011; e) R6
3D= 6125; f) grey: 

R6
3D= 6125, blue: R4

3D= 6015; g) grey: R6
3D= 6125, blue: R4

3D= 6015, red: R7
3D= 9099. 

 

Figure 14: Translation of 2D patterns to 3D building structures. Upper row: The 2D patterns were 
generated with the rule R2=7013 and the 3D structures with the rule R1

3D= 6114. Lower row: The 
2D patterns were generated with the rule R3=5012 and the 3D structures with the rule R2

3D= 4011.  
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Because it was not possible to find a suitable counting rule to achieve an adequate solution 

for a translation of the 2D structures generated with rule R3 to the third dimension, the 

voting rule was modified to the four cells of the von Neumann neighbourhood at the same 

floor and the cell directly below the one in consideration. With this new voting rule the 

counting rule R2
3D= 4011 leads to the expected results illustrated in figure 14, lower row.  

The very simplest method to change from a two-dimensional to a three-dimensional struc-

ture is just to extrude the built on plots with a defined height, but because there is no diffi-

culty with this implementation it is not investigated in more detail. Finally it has to be not-

ed, that the generated building structures are just rough outlines of possible buildings and 

they have to be elaborated in more detail, as was done for example in the work of Kraw-

czyk (2002).  

To conclude this section on the building level, some further experimental CA are presented 

succinctly. The development of these automata is highly sensitive to the initial condition of 

cells in state 1. In figure 15 the small pictures are the initial cell configurations and the 

large illustrations are the resulting structures produced with different rules and restrictions 

after a few generations. At the lower row of figure 15 three ways of keeping a certain dis-

tance between two automata are shown. The ideas for the freely developing 3D automata 

are inspired by (Coates et al, 1996). 

3.4. Optimisation Level 

This level is drafted to deal with concepts for reconstructions of given structures with re-

gard to particular criteria such as land use, light, aeration, rational parcelling, minimising of 

the site developments, or distribution of usages, et cetera. To optimise a certain settlement 

structure, the essential variables have to be recorded and evaluated first. The two main 

variables for a building structure can be determined as the lot coverage and the total floor 

area. It is relatively simple to compute these values from the cellular automata model by 

just counting the corresponding cells and calculating the ratios, as done above (figure 11) 

for the density information D, which corresponds to the lot coverage. The total floor area is 

the ratio of the occupied (grey) 3D cells to the total area or the sum of all 2D cells (figure 

16).  

With the methods of the CA developed so far it is only possible to generate structures by 

pre-determining some elements like streets and the definition of the local counting and 

voting rules, which has the advantage that a condition is always met locally and conse-

quently globally. But there is no way to feed back the global state to a further development 
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or to state contradictory requirements to the generative system. In the following, two 

promising methods are introduced: how to make a request that on the one hand cannot be 

completely met and on the other hand cannot be generated simultaneously by the system. 

In the scope of this article these two methods are mentioned but not investigated in detail.  

 
Figure 16: The variables of the total area (Gesamtfläche, left), the lot coverage (Grundflächenzahl 
GRZ, middle), and the total floor area – (Geschossflächenzahl GFZ, right). 

First, a termite system is considered, where termites (=agents) analyse their environment 

that consists of a defined neighbourhood U(H) and make some changes in it (Resnick, 

1994; Flake, 1998). For example the density of a certain structure can be increased or de-

creased at different places after the local condition is compared with the respective re-

quirements. To perform this operation the agents can “take” the built-on state of a cell and 

“place” it into a cell in a more suitable neighbourhood or delete it if the total number need 

not to be maintained (figure 17, left).   

 
Figure 17: Optimisation methods. Left: A partly highly dense structure is rebuilt and decreased in its 
local density using a termite system. Right: Distribution of four different usages A, B, C, and D with 
distance relations (9 = near together or 1 = far away from each other) given in the table. The corre-
sponding figure at the side shows 13 generations of varying arrangements generated by a genetic 
algorithm. 

Second, an interesting task would be to assign a given catalogue of usages to the generated 

building structures, whereas the distribution of particular usages depends on the allocation 

of other usages. The conditions can be captured in tabular form where the relative distanc-

es between the usages are expressed by numerical proportions. At the definition of these 

relations some requirements can contradict each other, which is why usually cannot be sat-
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isfied all together. Nevertheless an optimal solution with the least possible deviation can be 

found using genetic algorithms (Goldberg, 1989). The landscape of possible solutions for 

such problems can include one or more global solutions or there are many more or less 

well-fitting local optima which can be explored using different techniques. An example of 

an abstract solution for the relative distribution of four usages is illustrated in figure 17, on 

the right.  

4. Application 

In this section, the methods developed above are brought together to show the continuity 

of the generative planning process. We first briefly review the different structures to illus-

trate similarities with structures that can be found in reality and afterwards various planning 

alternatives for a specific urban area in the city of Munich is presented.  

4.1. Structural Survey  

In the following we consider nine different structures to investigate their characteristic 

properties and the variations of possible building structures based on the same road net-

work. The attempt has been made to provide a significant spectrum of variants from the 

multitude of possibilities. Figure 18a shows the initial configuration for the nine squares in 

18b, which are filled with different road networks in 18c and are followed up with three 

two-dimensional building structures generated with rules R2 and R3, illustrated in the lower 

row of figure 18.  

Figure 19 shows the three-dimensional structures generated on the basis of 18e on the left 

hand side with rule R2
3D, and on the basis of 18d on the right hand side with rule R1

3D.  

4.2. A real-life case study in the “Franzosenviertel” 

The three examples illustrated in figures 20-22 are all composed with the same method. At 

first the size of the cells is defined and the lattice is placed on the site. Next various site 

developments are created using the field types “Plan”, “Cluster”, “Vernetzer” and “Ausleg-

er”. Afterwards the areas enclosed by roads are filled with the two-dimensional building 

structures. In the final step, two different three-dimensional building structures are each 

derived from the two-dimensional structures.  
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Figure 18: a) Initial configuration; b) Numbering of the fields; c) The fields filled with different road 
systems: 1. “Cluster”; 2. “Plan” or regular grid; 3. “Vernetzer”; 4. “Ausleger”; 5. “Cluster” combined 
with “Ausleger”; 6. “Plan” or Rows; 7. “Plan” or irregular Raster; 8. “Ausleger“; 9. “Cluster“ com-
bined with a regular Raster; d) Road system with rule R2; e) & f) Road system with rule R3. 

 

      
Figure 19: Three-dimensional building structures based on 18e and 18d. 
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5. Discussion and future prospects 

Large construction projects are increasingly developed by private investors only without the 

participation of public authorities. This is the reason why economic considerations are giv-

en priority and social interests such as the quality of urban design are treated secondarily. 

In this case we need a strategy that satisfies the investors’ interests and nevertheless pro-

motes the architectonic qualities which are of benefit to the general public. For an optimal 

economic usage of a plot to facilitate profitable buildings the maximisation of the lot cov-

erage and the total floor area has to be ensured. Therefore the computer program devel-

oped can be used to meet these conditions and at the same time we can take these re-

quirements as a strategic basis for the design of sophisticated spatial configurations. That is 

to say that we try to overcome the monotonous standard solutions not only with aesthetic 

but also with economic arguments. The opinion that architects are made obsolete by the 

introduction of such technology cannot be upheld as this is a factor of the general mecha-

nisation of the world and its consequences. By comparison we only need consider mathe-

maticians, who have not been eliminated by computer technology but have used it to en-

hance their science. 

 

 
Figure 20: Examples for simple rasterised “Plan” structures. 
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Figure 21: Examples for “Cluster” structures.  

 
Figure 22: Examples for “Vernetzer” (upper row), and “Ausleger” structures. 

 Economic necessities result in a shortening of the planning period for property develop-

ment. This generally results in a dependency on standardised solutions and conventional 

design processes instead of looking for optimal and ambitious concepts. A standardised 

design process usually makes use of standardised solution patterns instead of searching for 

an optimal and innovative conception. Quality assurance by a public offer of an idea com-

petition is the exception among private investors. 

The support of planning processes using computers as a creative instrument can also im-

prove the rationality as well as the quality of the design. Once the rules, which can also be 

considered as genotypes, for a structure are explored and proven in practise they can be 

used for further planning. The result of such a planning process, the phenotype, is different 

every time, because the generative process depends on the particular local environmental 

conditions that are expressed by U(H) above. In this way it becomes possible to revert to a 
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proven solution without being restricted to a shallow copy. Only the main characteristics of 

a design are adopted. Artificial strategies of crossing and selecting several successful rules 

can be combined to achieve further optimised solutions (Goldberg, 1989). 

The instruments of the development plan can confirm the land-use and its allocation and 

provide guidelines for the spatial design by implementing building restriction lines, frontage 

lines and restrictions of use. At best there was a town-planning competition in the run-up 

to the development plan for better quality assurance. 

A new attempt for establishing a development plan could follow the example of the local 

counting and voting rules of the cellular automata model. This would offer the possibility to 

define the phenotype of the buildings by its genotype by means of a specific software sys-

tem to control the rules and the derivable structures. Spacing distances and building re-

striction lines could be fixed far more flexibly if one makes the variables dependent on one 

another and takes into account the initial intention of these regulations to provide each 

room of a building with sufficient air and light. 
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