TY - CHAP A1 - Baitsch, Matthias A1 - Hartmann, Dietrich ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - A FRAMEWORK FOR THE INTERACTIVE VISUALIZATION OF ENGINEERING MODELS N2 - Interactive visualization based on 3D computer graphics nowadays is an indispensable part of any simulation software used in engineering. Nevertheless, the implementation of such visualization software components is often avoided in research projects because it is a challenging and potentially time consuming task. In this contribution, a novel Java framework for the interactive visualization of engineering models is introduced. It supports the task of implementing engineering visualization software by providing adequate program logic as well as high level classes for the visual representation of entities typical for engineering models. The presented framework is built on top of the open source visualization toolkit VTK. In VTK, a visualization model is established by connecting several filter objects in a so called visualization pipeline. Although designing and implementing a good pipeline layout is demanding, VTK does not support the reuse of pipeline layouts directly. Our framework tailors VTK to engineering applications on two levels. On the first level it adds new – engineering model specific – filter classes to VTK. On the second level, ready made pipeline layouts for certain aspects of engineering models are provided. For instance there is a pipeline class for one-dimensional elements like trusses and beams that is capable of showing the elements along with deformations and member forces. In order to facilitate the implementation of a graphical user interface (GUI) for each pipeline class, there exists a reusable Java Swing GUI component that allows the user to configure the appearance of the visualization model. Because of the flexible structure, the framework can be easily adapted and extended to new problem domains. Currently it is used in (i) an object-oriented p-version finite element code for design optimization, (ii) an agent based monitoring system for dam structures and (iii) the simulation of destruction processes by controlled explosives based on multibody dynamics. Application examples from all three domains illustrates that the approach presented is powerful as well as versatile. KW - Architektur KW - CAD KW - Computerunterstütztes Verfahren Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170327-29194 UR - http://euklid.bauing.uni-weimar.de/ikm2006/index.php_lang=de&what=papers.html ER - TY - CHAP A1 - Wellmann Jelic, Andres A1 - Baitsch, Matthias A1 - Hartmann, Dietrich T1 - Distributed computing of failure probabilities for structures in civil engineering N2 - In this contribution the software design and implementation of an analysis server for the computation of failure probabilities in structural engineering is presented. The structures considered are described in terms of an equivalent Finite Element model, the stochastic properties, like e.g. the scatter of the material behavior or the incoming load, are represented using suitable random variables. Within the software framework, a Client-Server-Architecture has been implemented, employing the middleware CORBA for the communication between the distributed modules. The analysis server offers the possibility to compute failure probabilities for stochastically defined structures. Therefore, several different approximation (FORM, SORM) and simulation methods (Monte Carlo Simulation and Importance Sampling) have been implemented. This paper closes in showing several examples computed on the analysis server. KW - Konzipieren KW - Bauwerk KW - Verteiltes System KW - Fehler KW - Stochastik Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1030 ER -