TY - THES A1 - Ghasemi, Hamid T1 - Stochastic optimization of fiber reinforced composites considering uncertainties N2 - Briefly, the two basic questions that this research is supposed to answer are: 1. Howmuch fiber is needed and how fibers should be distributed through a fiber reinforced composite (FRC) structure in order to obtain the optimal and reliable structural response? 2. How do uncertainties influence the optimization results and reliability of the structure? Giving answer to the above questions a double stage sequential optimization algorithm for finding the optimal content of short fiber reinforcements and their distribution in the composite structure, considering uncertain design parameters, is presented. In the first stage, the optimal amount of short fibers in a FRC structure with uniformly distributed fibers is conducted in the framework of a Reliability Based Design Optimization (RBDO) problem. Presented model considers material, structural and modeling uncertainties. In the second stage, the fiber distribution optimization (with the aim to further increase in structural reliability) is performed by defining a fiber distribution function through a Non-Uniform Rational BSpline (NURBS) surface. The advantages of using the NURBS surface as a fiber distribution function include: using the same data set for the optimization and analysis; high convergence rate due to the smoothness of the NURBS; mesh independency of the optimal layout; no need for any post processing technique and its non-heuristic nature. The output of stage 1 (the optimal fiber content for homogeneously distributed fibers) is considered as the input of stage 2. The output of stage 2 is the Reliability Index (b ) of the structure with the optimal fiber content and distribution. First order reliability method (in order to approximate the limit state function) as well as different material models including Rule of Mixtures, Mori-Tanaka, energy-based approach and stochastic multi-scales are implemented in different examples. The proposed combined model is able to capture the role of available uncertainties in FRC structures through a computationally efficient algorithm using all sequential, NURBS and sensitivity based techniques. The methodology is successfully implemented for interfacial shear stress optimization in sandwich beams and also for optimization of the internal cooling channels in a ceramic matrix composite. Finally, after some changes and modifications by combining Isogeometric Analysis, level set and point wise density mapping techniques, the computational framework is extended for topology optimization of piezoelectric / flexoelectric materials. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2016,1 KW - Optimization KW - Fiber Reinforced Composite KW - Finite Element Method KW - Isogeometric Analysis KW - Flexoelectricity KW - Finite-Elemente-Methode KW - Optimierung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20161117-27042 ER - TY - THES A1 - Zacharias, Christin T1 - Numerical Simulation Models for Thermoelastic Damping Effects N2 - Finite Element Simulations of dynamically excited structures are mainly influenced by the mass, stiffness, and damping properties of the system, as well as external loads. The prediction quality of dynamic simulations of vibration-sensitive components depends significantly on the use of appropriate damping models. Damping phenomena have a decisive influence on the vibration amplitude and the frequencies of the vibrating structure. However, developing realistic damping models is challenging due to the multiple sources that cause energy dissipation, such as material damping, different types of friction, or various interactions with the environment. This thesis focuses on thermoelastic damping, which is the main cause of material damping in homogeneous materials. The effect is caused by temperature changes due to mechanical strains. In vibrating structures, temperature gradients arise in adjacent tension and compression areas. Depending on the vibration frequency, they result in heat flows, leading to increased entropy and the irreversible transformation of mechanical energy into thermal energy. The central objective of this thesis is the development of efficient simulation methods to incorporate thermoelastic damping in finite element analyses based on modal superposition. The thermoelastic loss factor is derived from the structure's mechanical mode shapes and eigenfrequencies. In subsequent analyses that are performed in the time and frequency domain, it is applied as modal damping. Two approaches are developed to determine the thermoelastic loss in thin-walled plate structures, as well as three-dimensional solid structures. The realistic representation of the dissipation effects is verified by comparing the simulation results with experimentally determined data. Therefore, an experimental setup is developed to measure material damping, excluding other sources of energy dissipation. The three-dimensional solid approach is based on the determination of the generated entropy and therefore the generated heat per vibration cycle, which is a measure for thermoelastic loss in relation to the total strain energy. For thin plate structures, the amount of bending energy in a modal deformation is calculated and summarized in the so-called Modal Bending Factor (MBF). The highest amount of thermoelastic loss occurs in the state of pure bending. Therefore, the MBF enables a quantitative classification of the mode shapes concerning the thermoelastic damping potential. The results of the developed simulations are in good agreement with the experimental results and are appropriate to predict thermoelastic loss factors. Both approaches are based on modal superposition with the advantage of a high computational efficiency. Overall, the modeling of thermoelastic damping represents an important component in a comprehensive damping model, which is necessary to perform realistic simulations of vibration processes. N2 - Die Finite-Elemente Simulation von dynamisch angeregten Strukturen wird im Wesentlich durch die Steifigkeits-, Massen- und Dämpfungseigenschaften des Systems sowie durch die äußere Belastung bestimmt. Die Vorhersagequalität von dynamischen Simulationen schwingungsanfälliger Bauteile hängt wesentlich von der Verwendung geeigneter Dämpfungsmodelle ab. Dämpfungsphänomene haben einen wesentlichen Einfluss auf die Schwingungsamplitude, die Frequenz und teilweise sogar die Existenz von Vibrationen. Allerdings ist die Entwicklung von realitätsnahen Dämpfungsmodellen oft schwierig, da eine Vielzahl von physikalischen Effekten zur Energiedissipation während eines Schwingungsvorgangs führt. Beispiele hierfür sind die Materialdämpfung, verschiedene Formen der Reibung sowie vielfältige Wechselwirkungen mit dem umgebenden Medium. Diese Dissertation befasst sich mit thermoelastischer Dämpfung, die in homogenen Materialien die dominante Ursache der Materialdämpfung darstellt. Der thermoelastische Effekt wird ausgelöst durch eine Temperaturänderung aufgrund mechanischer Spannungen. In der schwingenden Struktur entstehen während der Deformation Temperaturgradienten zwischen benachbarten Regionen unter Zug- und Druckbelastung. In Abhängigkeit von der Vibrationsfrequenz führen diese zu Wärmeströmen und irreversibler Umwandlung mechanischer in thermische Energie. Die Zielstellung dieser Arbeit besteht in der Entwicklung recheneffizienter Simulationsmethoden, um thermoelastische Dämpfung in zeitabhängigen Finite-Elemente Analysen, die auf modaler Superposition beruhen, zu integrieren. Der thermoelastische Verlustfaktor wird auf der Grundlage der mechanischen Eigenformen und -frequenzen bestimmt. In nachfolgenden Analysen im Zeit- und Frequenzbereich wird er als modaler Dämpfungsgrad verwendet. Zwei Ansätze werden entwickelt, um den thermoelastischen Verlustfaktor in dünn-wandigen Plattenstrukturen, sowie in dreidimensionalen Volumenbauteilen zu simulieren. Die realitätsnahe Vorhersage der Energiedissipation wird durch die Verifizierung an experimentellen Daten bestätigt. Dafür wird ein Versuchsaufbau entwickelt, der eine Messung von Materialdämpfung unter Ausschluss anderer Dissipationsquellen ermöglicht. Für den Fall der Volumenbauteile wird ein Ansatz verwendet, der auf der Berechnung der Entropieänderung und damit der erzeugte Wärmeenergie während eines Schwingungszyklus beruht. Im Verhältnis zur Formänderungsenergie ist dies ein Maß für die thermoelastische Dämpfung. Für dünne Plattenstrukturen wird der Anteil an Biegeenergie in der Eigenform bestimmt und im sogenannten modalen Biegefaktor (MBF) zusammengefasst. Der maximale Grad an thermoelastischer Dämpfung kann im Zustand reiner Biegung auftreten, sodass der MBF eine quantitative Klassifikation der Eigenformen hinsichtlich ihres thermoelastischen Dämpfungspotentials zulässt. Die Ergebnisse der entwickelten Simulationsmethoden stimmen sehr gut mit den experimentellen Daten überein und sind geeignet, um thermoelastische Dämpfungsgrade vorherzusagen. Beide Ansätze basieren auf modaler Superposition und ermöglichen damit zeitabhängige Simulationen mit einer hohen Recheneffizienz. Insgesamt stellt die Modellierung der thermoelastischen Dämpfung einen Baustein in einem umfassenden Dämpfungsmodell dar, welches zur realitätsnahen Simulation von Schwingungsvorgängen notwendig ist. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2022,8 KW - Werkstoffdämpfung KW - Finite-Elemente-Methode KW - Strukturdynamik KW - Thermoelastic damping KW - modal damping KW - decay experiments KW - energy dissipation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221116-47352 ER - TY - THES A1 - Keßler, Andrea T1 - Matrix-free voxel-based finite element method for materials with heterogeneous microstructures T1 - Matrixfreie voxelbasierte Finite-Elemente-Methode für Materialien mit komplizierter Mikrostruktur N2 - Modern image detection techniques such as micro computer tomography (μCT), magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) provide us with high resolution images of the microstructure of materials in a non-invasive and convenient way. They form the basis for the geometrical models of high-resolution analysis, so called image-based analysis. However especially in 3D, discretizations of these models reach easily the size of 100 Mill. degrees of freedoms and require extensive hardware resources in terms of main memory and computing power to solve the numerical model. Consequently, the focus of this work is to combine and adapt numerical solution methods to reduce the memory demand first and then the computation time and therewith enable an execution of the image-based analysis on modern computer desktops. Hence, the numerical model is a straightforward grid discretization of the voxel-based (pixels with a third dimension) geometry which omits the boundary detection algorithms and allows reduced storage of the finite element data structure and a matrix-free solution algorithm. This in turn reduce the effort of almost all applied grid-based solution techniques and results in memory efficient and numerically stable algorithms for the microstructural models. Two variants of the matrix-free algorithm are presented. The efficient iterative solution method of conjugate gradients is used with matrix-free applicable preconditioners such as the Jacobi and the especially suited multigrid method. The jagged material boundaries of the voxel-based mesh are smoothed through embedded boundary elements which contain different material information at the integration point and are integrated sub-cell wise though without additional boundary detection. The efficiency of the matrix-free methods can be retained. N2 - Moderne bildgebende Verfahren wie Mikro-Computertomographie (μCT), Magnetresonanztomographie (MRT) und Rasterelektronenmikroskopie (SEM) liefern nicht-invasiv hochauflösende Bilder der Mikrostruktur von Materialien. Sie bilden die Grundlage der geometrischen Modelle der hochauflösenden bildbasierten Analysis. Allerdings erreichen vor allem in 3D die Diskretisierungen dieser Modelle leicht die Größe von 100 Mill. Freiheitsgraden und erfordern umfangreiche Hardware-Ressourcen in Bezug auf Hauptspeicher und Rechenleistung, um das numerische Modell zu lösen. Der Fokus dieser Arbeit liegt daher darin, numerische Lösungsmethoden zu kombinieren und anzupassen, um den Speicherplatzbedarf und die Rechenzeit zu reduzieren und damit eine Ausführung der bildbasierten Analyse auf modernen Computer-Desktops zu ermöglichen. Daher ist als numerisches Modell eine einfache Gitterdiskretisierung der voxelbasierten (Pixel mit der Tiefe als dritten Dimension) Geometrie gewählt, die die Oberflächenerstellung weglässt und eine reduzierte Speicherung der finiten Elementen und einen matrixfreien Lösungsalgorithmus ermöglicht. Dies wiederum verringert den Aufwand von fast allen angewandten gitterbasierten Lösungsverfahren und führt zu Speichereffizienz und numerisch stabilen Algorithmen für die Mikrostrukturmodelle. Es werden zwei Varianten der Anpassung der matrixfreien Lösung präsentiert, die Element-für-Element Methode und eine Knoten-Kanten-Variante. Die Methode der konjugierten Gradienten in Kombination mit dem Mehrgitterverfahren als sehr effizienten Vorkonditionierer wird für den matrixfreien Lösungsalgorithmus adaptiert. Der stufige Verlauf der Materialgrenzen durch die voxelbasierte Diskretisierung wird durch Elemente geglättet, die am Integrationspunkt unterschiedliche Materialinformationen enthalten und über Teilzellen integriert werden (embedded boundary elements). Die Effizienz der matrixfreien Verfahren bleibt erhalten. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2018,7 KW - Dissertation KW - Finite-Elemente-Methode KW - Konjugierte-Gradienten-Methode KW - Mehrgitterverfahren KW - conjugate gradient method KW - multigrid method KW - grid-based KW - finite element method KW - matrix-free Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190116-38448 ER - TY - THES A1 - López Zermeño, Jorge Alberto T1 - Isogeometric and CAD-based methods for shape and topology optimization: Sensitivity analysis, Bézier elements and phase-field approaches N2 - The Finite Element Method (FEM) is widely used in engineering for solving Partial Differential Equations (PDEs) over complex geometries. To this end, it is required to provide the FEM software with a geometric model that is typically constructed in a Computer-Aided Design (CAD) software. However, FEM and CAD use different approaches for the mathematical description of the geometry. Thus, it is required to generate a mesh, which is suitable for FEM, based on the CAD model. Nonetheless, this procedure is not a trivial task and it can be time consuming. This issue becomes more significant for solving shape and topology optimization problems, which consist in evolving the geometry iteratively. Therefore, the computational cost associated to the mesh generation process is increased exponentially for this type of applications. The main goal of this work is to investigate the integration of CAD and CAE in shape and topology optimization. To this end, numerical tools that close the gap between design and analysis are presented. The specific objectives of this work are listed below: • Automatize the sensitivity analysis in an isogeometric framework for applications in shape optimization. Applications for linear elasticity are considered. • A methodology is developed for providing a direct link between the CAD model and the analysis mesh. In consequence, the sensitivity analysis can be performed in terms of the design variables located in the design model. • The last objective is to develop an isogeometric method for shape and topological optimization. This method should take advantage of using Non-Uniform Rational B-Splines (NURBS) with higher continuity as basis functions. Isogeometric Analysis (IGA) is a framework designed to integrate the design and analysis in engineering problems. The fundamental idea of IGA is to use the same basis functions for modeling the geometry, usually NURBS, for the approximation of the solution fields. The advantage of integrating design and analysis is two-fold. First, the analysis stage is more accurate since the system of PDEs is not solved using an approximated geometry, but the exact CAD model. Moreover, providing a direct link between the design and analysis discretizations makes possible the implementation of efficient sensitivity analysis methods. Second, the computational time is significantly reduced because the mesh generation process can be avoided. Sensitivity analysis is essential for solving optimization problems when gradient-based optimization algorithms are employed. Automatic differentiation can compute exact gradients, automatically by tracking the algebraic operations performed on the design variables. For the automation of the sensitivity analysis, an isogeometric framework is used. Here, the analysis mesh is obtained after carrying out successive refinements, while retaining the coarse geometry for the domain design. An automatic differentiation (AD) toolbox is used to perform the sensitivity analysis. The AD toolbox takes the code for computing the objective and constraint functions as input. Then, using a source code transformation approach, it outputs a code for computing the objective and constraint functions, and their sensitivities as well. The sensitivities obtained from the sensitivity propagation method are compared with analytical sensitivities, which are computed using a full isogeometric approach. The computational efficiency of AD is comparable to that of analytical sensitivities. However, the memory requirements are larger for AD. Therefore, AD is preferable if the memory requirements are satisfied. Automatic sensitivity analysis demonstrates its practicality since it simplifies the work of engineers and designers. Complex geometries with sharp edges and/or holes cannot easily be described with NURBS. One solution is the use of unstructured meshes. Simplex-elements (triangles and tetrahedra for two and three dimensions respectively) are particularly useful since they can automatically parameterize a wide variety of domains. In this regard, unstructured Bézier elements, commonly used in CAD, can be employed for the exact modelling of CAD boundary representations. In two dimensions, the domain enclosed by NURBS curves is parameterized with Bézier triangles. To describe exactly the boundary of a two-dimensional CAD model, the continuity of a NURBS boundary representation is reduced to C^0. Then, the control points are used to generate a triangulation such that the boundary of the domain is identical to the initial CAD boundary representation. Thus, a direct link between the design and analysis discretizations is provided and the sensitivities can be propagated to the design domain. In three dimensions, the initial CAD boundary representation is given as a collection of NURBS surfaces that enclose a volume. Using a mesh generator (Gmsh), a tetrahedral mesh is obtained. The original surface is reconstructed by modifying the location of the control points of the tetrahedral mesh using Bézier tetrahedral elements and a point inversion algorithm. This method offers the possibility of computing the sensitivity analysis using the analysis mesh. Then, the sensitivities can be propagated into the design discretization. To reuse the mesh originally generated, a moving Bézier tetrahedral mesh approach was implemented. A gradient-based optimization algorithm is employed together with a sensitivity propagation procedure for the shape optimization cases. The proposed shape optimization approaches are used to solve some standard benchmark problems in structural mechanics. The results obtained show that the proposed approach can compute accurate gradients and evolve the geometry towards optimal solutions. In three dimensions, the moving mesh approach results in faster convergence in terms of computational time and avoids remeshing at each optimization step. For considering topological changes in a CAD-based framework, an isogeometric phase-field based shape and topology optimization is developed. In this case, the diffuse interface of a phase-field variable over a design domain implicitly describes the boundaries of the geometry. The design variables are the local values of the phase-field variable. The descent direction to minimize the objective function is found by using the sensitivities of the objective function with respect to the design variables. The evolution of the phase-field is determined by solving the time dependent Allen-Cahn equation. Especially for topology optimization problems that require C^1 continuity, such as for flexoelectric structures, the isogeometric phase field method is of great advantage. NURBS can achieve the desired continuity more efficiently than the traditional employed functions. The robustness of the method is demonstrated when applied to different geometries, boundary conditions, and material configurations. The applications illustrate that compared to piezoelectricity, the electrical performance of flexoelectric microbeams is larger under bending. In contrast, the electrical power for a structure under compression becomes larger with piezoelectricity. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2022,4 KW - CAD KW - Gestaltoptimierung KW - Topologieoptimierung KW - Isogeometrische Analyse KW - Finite-Elemente-Methode KW - Computer-Aided Design KW - Shape Optimization KW - Topology Optimization KW - Isogeometric Analysis KW - Finite Element Method Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220831-47102 ER - TY - THES A1 - Schwedler, Michael T1 - Integrated structural analysis using isogeometric finite element methods N2 - The gradual digitization in the architecture, engineering, and construction industry over the past fifty years led to an extremely heterogeneous software environment, which today is embodied by the multitude of different digital tools and proprietary data formats used by the many specialists contributing to the design process in a construction project. Though these projects become increasingly complex, the demands on financial efficiency and the completion within a tight schedule grow at the same time. The digital collaboration of project partners has been identified as one key issue in successfully dealing with these challenges. Yet currently, the numerous software applications and their respective individual views on the design process severely impede that collaboration. An approach to establish a unified basis for the digital collaboration, regardless of the existing software heterogeneity, is a comprehensive digital building model contributed to by all projects partners. This type of data management known as building information modeling (BIM) has many benefits, yet its adoption is associated with many difficulties and thus, proceeds only slowly. One aspect in the field of conflicting requirements on such a digital model is the cooperation of architects and structural engineers. Traditionally, these two disciplines use different abstractions of reality for their models that in consequence lead to incompatible digital representations thereof. The onset of isogeometric analysis (IGA) promised to ease the discrepancy in design and analysis model representations. Yet, that initial focus quickly shifted towards using these methods as a more powerful basis for numerical simulations. Furthermore, the isogeometric representation alone is not capable of solving the model abstraction problem. It is thus the intention of this work to contribute to an improved digital collaboration of architects and engineers by exploring an integrated analysis approach on the basis of an unified digital model and solid geometry expressed by splines. In the course of this work, an analysis framework is developed that utilizes such models to automatically conduct numerical simulations commonly required in construction projects. In essence, this allows to retrieve structural analysis results from BIM models in a fast and simple manner, thereby facilitating rapid design iterations and profound design feedback. The BIM implementation Industry Foundation Classes (IFC) is reviewed with regard to its capabilities of representing the unified model. The current IFC schema strongly supports the use of redundant model data, a major pitfall in digital collaboration. Additionally, it does not allow to describe the geometry by volumetric splines. As the pursued approach builds upon a unique model for both, architectural and structural design, and furthermore requires solid geometry, necessary schema modifications are suggested. Structural entities are modeled by volumetric NURBS patches, each of which constitutes an individual subdomain that, with regard to the analysis, is incompatible with the remaining full model. The resulting consequences for numerical simulation are elaborated in this work. The individual subdomains have to be weakly coupled, for which the mortar method is used. Different approaches to discretize the interface traction fields are implemented and their respective impact on the analysis results is evaluated. All necessary coupling conditions are automatically derived from the related geometry model. The weak coupling procedure leads to a linear system of equations in saddle point form, which, owed to the volumetric modeling, is large in size and, the associated coefficient matrix has, due to the use of higher degree basis functions, a high bandwidth. The peculiarities of the system require adapted solution methods that generally cause higher numerical costs than the standard procedures for symmetric, positive-definite systems do. Different methods to solve the specific system are investigated and an efficient parallel algorithm is finally proposed. When the structural analysis model is derived from the unified model in the BIM data, it does in general initially not meet the requirements on the discretization that are necessary to obtain sufficiently accurate analysis results. The consequently necessary patch refinements must be controlled automatically to allowfor an entirely automatic analysis procedure. For that purpose, an empirical refinement scheme based on the geometrical and possibly mechanical properties of the specific entities is proposed. The level of refinement may be selectively manipulated by the structural engineer in charge. Furthermore, a Zienkiewicz-Zhu type error estimator is adapted for the use with isogeometric analysis results. It is shown that also this estimator can be used to steer an adaptive refinement procedure. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2016,2 KW - Finite-Elemente-Methode KW - NURBS KW - Isogeometrische Analyse KW - finite element method KW - isogeometric analysis KW - mortar method KW - building information modelling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170130-27372 ER - TY - THES A1 - Habtemariam, Abinet Kifle T1 - Generalized Beam Theory for the analysis of thin-walled circular pipe members N2 - The detailed structural analysis of thin-walled circular pipe members often requires the use of a shell or solid-based finite element method. Although these methods provide a very good approximation of the deformations, they require a higher degree of discretization which causes high computational costs. On the other hand, the analysis of thin-walled circular pipe members based on classical beam theories is easy to implement and needs much less computation time, however, they are limited in their ability to approximate the deformations as they cannot consider the deformation of the cross-section. This dissertation focuses on the study of the Generalized Beam Theory (GBT) which is both accurate and efficient in analyzing thin-walled members. This theory is based on the separation of variables in which the displacement field is expressed as a combination of predetermined deformation modes related to the cross-section, and unknown amplitude functions defined on the beam's longitudinal axis. Although the GBT was initially developed for long straight members, through the consideration of complementary deformation modes, which amend the null transverse and shear membrane strain assumptions of the classical GBT, problems involving short members, pipe bends, and geometrical nonlinearity can also be analyzed using GBT. In this dissertation, the GBT formulation for the analysis of these problems is developed and the application and capabilities of the method are illustrated using several numerical examples. Furthermore, the displacement and stress field results of these examples are verified using an equivalent refined shell-based finite element model. The developed static and dynamic GBT formulations for curved thin-walled circular pipes are based on the linear kinematic description of the curved shell theory. In these formulations, the complex problem in pipe bends due to the strong coupling effect of the longitudinal bending, warping and the cross-sectional ovalization is handled precisely through the derivation of the coupling tensors between the considered GBT deformation modes. Similarly, the geometrically nonlinear GBT analysis is formulated for thin-walled circular pipes based on the nonlinear membrane kinematic equations. Here, the initial linear and quadratic stress and displacement tangent stiffness matrices are built using the third and fourth-order GBT deformation mode coupling tensors. Longitudinally, the formulation of the coupled GBT element stiffness and mass matrices are presented using a beam-based finite element formulation. Furthermore, the formulated GBT elements are tested for shear and membrane locking problems and the limitations of the formulations regarding the membrane locking problem are discussed. N2 - Eine detaillierte Strukturanalyse dünnwandiger, kreisförmiger Rohrelemente erfordert oft die Verwendung von Schalenelementen in der Finite Elemente Methode. Diese Methode ermöglicht eine sehr gute Approximation des Verformungszustandes, erfordert jedoch einen hohen Grad der Diskretisierung, welcher wiederum einen hohen Rechenaufwand verursacht. Eine alternative Methode hierzu basiert auf klassischen Balkentheorien, welche eine einfache Modellierung ermöglichen und wesentlich geringeren Rechenaufwand erfordern. Diese weisen jedoch Einschränkungen bei der Approximation von Verformungen auf, da Querschnittsverformungen nicht berücksichtigt werden können. Schwerpunkt dieser Dissertation ist eine Untersuchung der Verallgemeinerten Technischen Biegetheorie (VTB), die sowohl eine genaue als auch eine effiziente Analyse von dünnwandigen Tragwerkselementen ermöglicht. Diese Theorie basiert auf einer Trennung der Variablen, in der das Verschiebungsfeld als eine Kombination von vorbestimmten Verformungsmoden der Querschnitts und unbekannten Amplitudenfunktionen in Längsrichtung ausgedrückt wird. Obwohl die VTB ursprünglich für lange, gerade Elemente entwickelt wurde, können durch die Berücksichtigung komplementärer Verformungsmoden, welche die Null-Annahmen der klassischen VTB für Quer- und Schubmembrandehnung abändern, Probleme mit kurzen Elementen, Rohrbögen und geometrischer Nichtlinearität analysiert werden. In dieser Dissertation wird die VTB-Formulierung für die Analyse dieser Probleme entwickelt. Die Anwendung und Möglichkeiten der Methode werden anhand mehrerer numerischer Beispiele veranschaulicht, deren Verschiebungs- und Spannungsfeldanalysen anhand eines äquivalenten, verfeinerten, schalenbasierten Finite-Elemente-Modells verifiziert werden. Die entwickelten statischen und dynamischen VTB-Formulierungen für Rohrbogenelemente basieren auf der linearen kinematischen Beschreibung der Theorie gekrümmter Schalen. In diesen Formulierungen wird das komplexe Problem in Rohrbögen aufgrund des starken Kopplungseffekts der Längsbiegung, der Verwölbung und der Querschnittsovalisierung durch die Herleitung der Kopplungstensoren zwischen den betrachteten VTB-Verformungsmoden präzise behandelt. In ähnlicher Weise wird die geometrisch nichtlineare VTB-Analyse für gerade Rohrelemente auf der Grundlage der nichtlinearen kinematischen Membrangleichungen formuliert. Die anfänglichen linearen und quadratischen Spannungs- und Verschiebungs-Tangentensteifigkeitsmatrizen werden dabei unter Verwendung der VTB-Kopplungstensoren dritter und vierter Ordnung aufgebaut. In Längsrichtung wird die Formulierung der gekoppelten VTB-Element-Steifigkeits- und Massenmatrizen unter Verwendung einer balkenbasierten Finite-Elemente Formulierung dargestellt. Weiterhin werden die VTB-Elemente auf Schub- und Membran-Locking-Probleme getestet und die Einschränkungen der Formulierungen bezüglich des Membran-Locking-Problems diskutiert. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2022,2 KW - Finite-Elemente-Methode KW - Dynamische Analyse KW - Generalized Beam Theory (GBT) KW - Finite Element Method KW - Dynamic Analysis KW - Geometrically nonlinear analysis KW - Curved thin-walled circular pipes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220127-45723 ER - TY - THES A1 - Eckardt, Stefan T1 - Adaptive heterogeneous multiscale models for the nonlinear simulation of concrete N2 - The nonlinear behavior of concrete can be attributed to the propagation of microcracks within the heterogeneous internal material structure. In this thesis, a mesoscale model is developed which allows for the explicit simulation of these microcracks. Consequently, the actual physical phenomena causing the complex nonlinear macroscopic behavior of concrete can be represented using rather simple material formulations. On the mesoscale, the numerical model explicitly resolves the components of the internal material structure. For concrete, a three-phase model consisting of aggregates, mortar matrix and interfacial transition zone is proposed. Based on prescribed grading curves, an efficient algorithm for the generation of three-dimensional aggregate distributions using ellipsoids is presented. In the numerical model, tensile failure of the mortar matrix is described using a continuum damage approach. In order to reduce spurious mesh sensitivities, introduced by the softening behavior of the matrix material, nonlocal integral-type material formulations are applied. The propagation of cracks at the interface between aggregates and mortar matrix is represented in a discrete way using a cohesive crack approach. The iterative solution procedure is stabilized using a new path following constraint within the framework of load-displacement-constraint methods which allows for an efficient representation of snap-back phenomena. In several examples, the influence of the randomly generated heterogeneous material structure on the stochastic scatter of the results is analyzed. Furthermore, the ability of mesoscale models to represent size effects is investigated. Mesoscale simulations require the discretization of the internal material structure. Compared to simulations on the macroscale, the numerical effort and the memory demand increases dramatically. Due to the complexity of the numerical model, mesoscale simulations are, in general, limited to small specimens. In this thesis, an adaptive heterogeneous multiscale approach is presented which allows for the incorporation of mesoscale models within nonlinear simulations of concrete structures. In heterogeneous multiscale models, only critical regions, i.e. regions in which damage develops, are resolved on the mesoscale, whereas undamaged or sparsely damage regions are modeled on the macroscale. A crucial point in simulations with heterogeneous multiscale models is the coupling of sub-domains discretized on different length scales. The sub-domains differ not only in the size of the finite elements but also in the constitutive description. In this thesis, different methods for the coupling of non-matching discretizations - constraint equations, the mortar method and the arlequin method - are investigated and the application to heterogeneous multiscale models is presented. Another important point is the detection of critical regions. An adaptive solution procedure allowing the transfer of macroscale sub-domains to the mesoscale is proposed. In this context, several indicators which trigger the model adaptation are introduced. Finally, the application of the proposed adaptive heterogeneous multiscale approach in nonlinear simulations of concrete structures is presented. N2 - Das nichtlineare Materialverhalten von Beton ist durch die Entwicklung von Mikrorissen innerhalb der heterogenen Materialstruktur gekennzeichnet. In dieser Arbeit wird ein Mesoskalenmodell entwickelt, welches die einzelnen Bestandteile der Materialstruktur explizit auflöst und somit die Simulation dieser Mikrorisse erlaubt. Dadurch können die wirklichen physikalischen Vorgänge, welche das komplexe nichtlineare Verhalten von Beton verursachen, durch relativ einfache Materialformulierungen abgebildet werden. Für Beton wird auf der Mesoskala ein 3-Phasenmodell vorgeschlagen, bestehend aus groben Zuschlägen, Mörtelmatrix und Übergangszone zwischen Zuschlag und Matrix. In diesem Zusammenhang wird ein effizienter Algorithmus vorgestellt, welcher ausgehend von einer gegebenen Sieblinie dreidimensionale Kornstrukturen mittels Ellipsoiden simuliert. Im Mesoskalenmodell wird das Zugversagen der Mörtelmatrix durch einen Kontinuumsansatz beschrieben. Um Netzabhängigkeiten, welche durch das Entfestigungsverhalten des Materials hervorgerufen werden, zu reduzieren, kommen nichtlokale Materialformulierungen zum Einsatz. Risse innerhalb der Übergangszone zwischen Zuschlag und Matrix werden, basierend auf einem kohäsiven Modell, mittels eines diskreten Rissansatzes abgebildet. Die Verwendung einer neuen Nebenbedingung innerhalb der Last-Verschiebungs-Zwangsmethode führt zu einer Stabilisierung des iterativen Lösungverfahrens, so dass eine effiziente Simulation von Snap-back Phänomenen möglich wird. Anhand von Beispielen wird gezeigt, dass Mesoskalenmodelle die stochastische Streuung von Ergebnissen und Maßstabseffekte abbilden können. Da auf der Mesoskala die Diskretisierung der inneren Materialstruktur erforderlich ist, steigt im Vergleich zu Simulationen auf der Makroskala der numerische Aufwand erheblich. Aufgrund der Komplexität des numerischen Modells sind Mesoskalensimulationen in der Regel auf kleine Probekörper beschränkt. In dieser Arbeit wird ein adaptiver heterogener Mehrskalenansatz vorgestellt, welcher die Verwendung von Mesoskalenmodellen in nichtlinearen Simulationen von Betonstrukturen erlaubt. In heterogenen Mehrskalenmodellen werden nur kritische Bereiche auf der Mesoskala aufgelöst, während ungeschädigte Bereiche auf der Makroskala abgebildet werden. Ein wichtiger Aspekt in Simulationen mit heterogenen Mehrskalenmodellen ist die Kopplung der auf unterschiedlichen Längenskalen diskretisierten Teilgebiete. Diese unterscheiden sich nicht nur in der Größe der finiten Elemente sondern auch in der Beschreibung des Materials. Verschiedene Methoden zur Kopplung nicht übereinstimmender Vernetzungen - Kopplungsgleichungen, die Mortar-Methode und die Arlequin-Methode - werden untersucht und ihre Anwendung in heterogenen Mehrskalenmodellen wird gezeigt. Ein weiterer wichtiger Aspekt ist die Bestimmung kritischer Regionen. Eine adaptive Lösungsstrategie wird entwickelt, welche die Umwandlung von Makroskalengebieten auf die Mesoskala erlaubt. In diesem Zusammenhang werden Indikatoren vorgestellt, die eine Modellanpassung auslösen. Anhand nichtlinearer Simulationen von Betonstrukturen wird die Anwendung des vorgestellten adaptiven heterogenen Mehrskalenansatzes demonstriert. T2 - Adaptive heterogene Mehrskalenmodelle zur nichtlinearen Simulation von Beton T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2010,1 KW - Beton KW - Mehrskalenanalyse KW - Finite-Elemente-Methode KW - Nichtlineare Finite-Elemente-Methode KW - Schadensmechanik KW - Mehrskalenmodell KW - Adaptives Verfahren KW - concrete KW - multiscale method KW - finite element method KW - continuum damage mechanics KW - adaptive simulation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20100317-15023 ER -