TY - JOUR A1 - Kavrakov, Igor A1 - Legatiuk, Dmitrii A1 - Gürlebeck, Klaus A1 - Morgenthal, Guido T1 - A categorical perspective towards aerodynamic models for aeroelastic analyses of bridge decks JF - Royal Society Open Science N2 - Reliable modelling in structural engineering is crucial for the serviceability and safety of structures. A huge variety of aerodynamic models for aeroelastic analyses of bridges poses natural questions on their complexity and thus, quality. Moreover, a direct comparison of aerodynamic models is typically either not possible or senseless, as the models can be based on very different physical assumptions. Therefore, to address the question of principal comparability and complexity of models, a more abstract approach, accounting for the effect of basic physical assumptions, is necessary. This paper presents an application of a recently introduced category theory-based modelling approach to a diverse set of models from bridge aerodynamics. Initially, the categorical approach is extended to allow an adequate description of aerodynamic models. Complexity of the selected aerodynamic models is evaluated, based on which model comparability is established. Finally, the utility of the approach for model comparison and characterisation is demonstrated on an illustrative example from bridge aeroelasticity. The outcome of this study is intended to serve as an alternative framework for model comparison and impact future model assessment studies of mathematical models for engineering applications. KW - Brücke KW - Aerodynamik KW - Aeroelastizität KW - bridge KW - abstract modelling KW - category theory KW - bridge aerodynamics KW - bridge aeroelasticity KW - aerodynamic models KW - model complexity KW - OA-Publikationsfonds2019 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190314-38656 UR - https://royalsocietypublishing.org/doi/10.1098/rsos.181848 IS - Volume 6, Issue 3 ER - TY - JOUR A1 - Alalade, Muyiwa A1 - Reichert, Ina A1 - Köhn, Daniel A1 - Wuttke, Frank A1 - Lahmer, Tom ED - Qu, Chunxu ED - Gao, Chunxu ED - Zhang, Rui ED - Jia, Ziguang ED - Li, Jiaxiang T1 - A Cyclic Multi-Stage Implementation of the Full-Waveform Inversion for the Identification of Anomalies in Dams JF - Infrastructures N2 - For the safe and efficient operation of dams, frequent monitoring and maintenance are required. These are usually expensive, time consuming, and cumbersome. To alleviate these issues, we propose applying a wave-based scheme for the location and quantification of damages in dams. To obtain high-resolution “interpretable” images of the damaged regions, we drew inspiration from non-linear full-multigrid methods for inverse problems and applied a new cyclic multi-stage full-waveform inversion (FWI) scheme. Our approach is less susceptible to the stability issues faced by the standard FWI scheme when dealing with ill-posed problems. In this paper, we first selected an optimal acquisition setup and then applied synthetic data to demonstrate the capability of our approach in identifying a series of anomalies in dams by a mixture of reflection and transmission tomography. The results had sufficient robustness, showing the prospects of application in the field of non-destructive testing of dams. KW - Damm KW - Defekt KW - inverse analysis KW - damage identification KW - full-waveform inversion KW - dams KW - wave propagation KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221201-48396 UR - https://www.mdpi.com/2412-3811/7/12/161 VL - 2022 IS - Volume 7, issue 12, article 161 PB - MDPI CY - Basel ER - TY - JOUR A1 - Anders, Frauke A1 - König, Reinhard T1 - Analyse und Generierung von Straßennetzwerken mittels graphenbasierter Methoden N2 - Der vorliegende Beitrag ist in zwei thematische Teilebereiche gegliedert. Der erste Teil beschäftigt sich mit der Analyse von Graphen, insbesondere von Graphen, die Straßennetzwerke repräsentieren. Hierzu werden Methoden aus der Graphentheorie angewendet und Kenngrößen aus der Space Syntax Methode ausgewertet. Ein Framework, welches basierend auf der Graphentheorie in Architektur und Stadtplanung Einzug gehalten hat, ist die Space Syntax Methode. Sie umfasst die Ableitung unterschiedlicher Kenngrößen eines Graphen bzw. Netzwerkes, wodurch eine Analyse für architektonische und stadtplanerische Zwecke ermöglicht wird. Der zweite Teil dieses Berichts beschäftigt sich mit der Generierung von Graphen, insbe-sondere der von Straßennetzwerkgraphen. Die generativen Methoden basieren zum Teil auf den gewonnenen Erkenntnissen der Analyse von Straßennetzwerken. Es werden unterschiedliche Ansätze untersucht, um verschiedene Parameterwerte zur Generierung von Straßengraphen festzulegen. Als Ergebnis der Arbeiten ist ein Softwaretool entstanden, welches es erlaubt, auf Grundlage einer Voronoi-Tesselierung realistische Straßennetzwerkgraphen zu erzeugen. T3 - Arbeitspapiere Informatik in der Architektur - Nr. 7 KW - Graph KW - Straßennetzwerk analyse, graph-basierte generative Methoden Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20120509-16514 UR - http://infar.architektur.uni-weimar.de/service/drupal-infar/Arbeitspapiere ER - TY - JOUR A1 - Guo, Hongwei A1 - Zhuang, Xiaoying A1 - Chen, Pengwan A1 - Alajlan, Naif A1 - Rabczuk, Timon T1 - Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis JF - Engineering with Computers N2 - In this work, we present a deep collocation method (DCM) for three-dimensional potential problems in non-homogeneous media. This approach utilizes a physics-informed neural network with material transfer learning reducing the solution of the non-homogeneous partial differential equations to an optimization problem. We tested different configurations of the physics-informed neural network including smooth activation functions, sampling methods for collocation points generation and combined optimizers. A material transfer learning technique is utilized for non-homogeneous media with different material gradations and parameters, which enhance the generality and robustness of the proposed method. In order to identify the most influential parameters of the network configuration, we carried out a global sensitivity analysis. Finally, we provide a convergence proof of our DCM. The approach is validated through several benchmark problems, also testing different material variations. KW - Deep learning KW - Kollokationsmethode KW - Collocation method KW - Potential problem KW - Activation function KW - Transfer learning Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220811-46764 UR - https://link.springer.com/article/10.1007/s00366-022-01633-6 VL - 2022 SP - 1 EP - 22 ER - TY - JOUR A1 - Lizarazu, Jorge A1 - Harirchian, Ehsan A1 - Shaik, Umar Arif A1 - Shareef, Mohammed A1 - Antoni-Zdziobek, Annie A1 - Lahmer, Tom T1 - Application of machine learning-based algorithms to predict the stress-strain curves of additively manufactured mild steel out of its microstructural characteristics JF - Results in Engineering N2 - The study presents a Machine Learning (ML)-based framework designed to forecast the stress-strain relationship of arc-direct energy deposited mild steel. Based on microstructural characteristics previously extracted using microscopy and X-ray diffraction, approximately 1000 new parameter sets are generated by applying the Latin Hypercube Sampling Method (LHSM). For each parameter set, a Representative Volume Element (RVE) is synthetically created via Voronoi Tessellation. Input raw data for ML-based algorithms comprises these parameter sets or RVE-images, while output raw data includes their corresponding stress-strain relationships calculated after a Finite Element (FE) procedure. Input data undergoes preprocessing involving standardization, feature selection, and image resizing. Similarly, the stress-strain curves, initially unsuitable for training traditional ML algorithms, are preprocessed using cubic splines and occasionally Principal Component Analysis (PCA). The later part of the study focuses on employing multiple ML algorithms, utilizing two main models. The first model predicts stress-strain curves based on microstructural parameters, while the second model does so solely from RVE images. The most accurate prediction yields a Root Mean Squared Error of around 5 MPa, approximately 1% of the yield stress. This outcome suggests that ML models offer precise and efficient methods for characterizing dual-phase steels, establishing a framework for accurate results in material analysis. KW - Maschinelles Lernen KW - Baustahl KW - Spannungs-Dehnungs-Beziehung KW - Arc-direct energy deposition KW - Mild steel KW - Dual phase steel KW - Stress-strain curve KW - OA-Publikationsfonds2023 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20231207-65028 UR - https://www.sciencedirect.com/science/article/pii/S2590123023007144 VL - 2023 IS - Volume 20 (2023) SP - 1 EP - 12 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lashkar-Ara, Babak A1 - Kalantari, Niloofar A1 - Sheikh Khozani, Zohreh A1 - Mosavi, Amir T1 - Assessing Machine Learning versus a Mathematical Model to Estimate the Transverse Shear Stress Distribution in a Rectangular Channel JF - Mathematics N2 - One of the most important subjects of hydraulic engineering is the reliable estimation of the transverse distribution in the rectangular channel of bed and wall shear stresses. This study makes use of the Tsallis entropy, genetic programming (GP) and adaptive neuro-fuzzy inference system (ANFIS) methods to assess the shear stress distribution (SSD) in the rectangular channel. To evaluate the results of the Tsallis entropy, GP and ANFIS models, laboratory observations were used in which shear stress was measured using an optimized Preston tube. This is then used to measure the SSD in various aspect ratios in the rectangular channel. To investigate the shear stress percentage, 10 data series with a total of 112 different data for were used. The results of the sensitivity analysis show that the most influential parameter for the SSD in smooth rectangular channel is the dimensionless parameter B/H, Where the transverse coordinate is B, and the flow depth is H. With the parameters (b/B), (B/H) for the bed and (z/H), (B/H) for the wall as inputs, the modeling of the GP was better than the other one. Based on the analysis, it can be concluded that the use of GP and ANFIS algorithms is more effective in estimating shear stress in smooth rectangular channels than the Tsallis entropy-based equations. KW - Maschinelles Lernen KW - smooth rectangular channel KW - Tsallis entropy KW - genetic programming KW - artificial intelligence KW - machine learning KW - big data KW - computational hydraulics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210504-44197 UR - https://www.mdpi.com/2227-7390/9/6/596 VL - 2021 IS - Volume 9, Issue 6, Article 596 PB - MDPI CY - Basel ER - TY - JOUR A1 - Chowdhury, Sharmistha A1 - Kraus, Matthias T1 - Design-related reassessment of structures integrating Bayesian updating of model safety factors JF - Results in Engineering N2 - In the semi-probabilistic approach of structural design, the partial safety factors are defined by considering some degree of uncertainties to actions and resistance, associated with the parameters’ stochastic nature. However, uncertainties for individual structures can be better examined by incorporating measurement data provided by sensors from an installed health monitoring scheme. In this context, the current study proposes an approach to revise the partial safety factor for existing structures on the action side, γE by integrating Bayesian model updating. A simple numerical example of a beam-like structure with artificially generated measurement data is used such that the influence of different sensor setups and data uncertainties on revising the safety factors can be investigated. It is revealed that the health monitoring system can reassess the current capacity reserve of the structure by updating the design safety factors, resulting in a better life cycle assessment of structures. The outcome is furthermore verified by analysing a real life small railway steel bridge ensuring the applicability of the proposed method to practical applications. KW - Lebenszyklus KW - Sicherheitsfaktor KW - Structural health monitoring KW - Safety factor KW - Life cycle assessment KW - Uncertainty KW - Bayesian parameter update KW - Ungewissheit KW - Umweltbilanz KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221028-47294 UR - https://www.sciencedirect.com/science/article/pii/S2590123022002304?via%3Dihub VL - 2022 IS - Volume 16, article 100560 SP - 1 EP - 1 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sirtl, Christin A1 - Hadlich, Christiane A1 - Kraus, Matthias A1 - Osburg, Andrea T1 - Determination of Bonding Failures in Transparent Materials with Non-Destructive Methods – Evaluation of Climatically Stressed Glued and Laminated Glass Compounds JF - World Journal of Engineering and Technology N2 - As part of an international research project – funded by the European Union – capillary glasses for facades are being developed exploiting storage energy by means of fluids flowing through the capillaries. To meet highest visual demands, acrylate adhesives and EVA films are tested as possible bonding materials for the glass setup. Especially non-destructive methods (visual analysis, analysis of birefringent properties and computed tomographic data) are applied to evaluate failure patterns as well as the long-term behavior considering climatic influences. The experimental investigations are presented after different loading periods, providing information of failure developments. In addition, detailed information and scientific findings on the application of computed tomographic analyses are presented. KW - Klebtechnik KW - Non-Destructive Testing KW - Bonding Methods KW - OA-Publikationsfonds2018 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20180606-37526 UR - http://www.scirp.org/journal/PaperInformation.aspx?PaperID=84507 VL - 2018 IS - Vol. 6, No 2 SP - 315 EP - 331 ER - TY - JOUR A1 - Chakraborty, Ayan A1 - Anitescu, Cosmin A1 - Zhuang, Xiaoying A1 - Rabczuk, Timon T1 - Domain adaptation based transfer learning approach for solving PDEs on complex geometries JF - Engineering with Computers N2 - In machine learning, if the training data is independently and identically distributed as the test data then a trained model can make an accurate predictions for new samples of data. Conventional machine learning has a strong dependence on massive amounts of training data which are domain specific to understand their latent patterns. In contrast, Domain adaptation and Transfer learning methods are sub-fields within machine learning that are concerned with solving the inescapable problem of insufficient training data by relaxing the domain dependence hypothesis. In this contribution, this issue has been addressed and by making a novel combination of both the methods we develop a computationally efficient and practical algorithm to solve boundary value problems based on nonlinear partial differential equations. We adopt a meshfree analysis framework to integrate the prevailing geometric modelling techniques based on NURBS and present an enhanced deep collocation approach that also plays an important role in the accuracy of solutions. We start with a brief introduction on how these methods expand upon this framework. We observe an excellent agreement between these methods and have shown that how fine-tuning a pre-trained network to a specialized domain may lead to an outstanding performance compare to the existing ones. As proof of concept, we illustrate the performance of our proposed model on several benchmark problems. KW - Maschinelles Lernen KW - NURBS KW - Transfer learning KW - Domain Adaptation KW - NURBS geometry KW - Navier–Stokes equations Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220811-46776 UR - https://link.springer.com/article/10.1007/s00366-022-01661-2 VL - 2022 SP - 1 EP - 20 ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Lahmer, Tom A1 - Rasulzade, Shahla T1 - Earthquake Hazard Safety Assessment of Existing Buildings Using Optimized Multi-Layer Perceptron Neural Network JF - Energies N2 - The latest earthquakes have proven that several existing buildings, particularly in developing countries, are not secured from damages of earthquake. A variety of statistical and machine-learning approaches have been proposed to identify vulnerable buildings for the prioritization of retrofitting. The present work aims to investigate earthquake susceptibility through the combination of six building performance variables that can be used to obtain an optimal prediction of the damage state of reinforced concrete buildings using artificial neural network (ANN). In this regard, a multi-layer perceptron network is trained and optimized using a database of 484 damaged buildings from the Düzce earthquake in Turkey. The results demonstrate the feasibility and effectiveness of the selected ANN approach to classify concrete structural damage that can be used as a preliminary assessment technique to identify vulnerable buildings in disaster risk-management programs. KW - Erdbeben KW - Maschinelles Lernen KW - earthquake damage KW - seismic vulnerability KW - artificial neural network KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200504-41575 UR - https://www.mdpi.com/1996-1073/13/8/2060/htm VL - 2020 IS - Volume 13, Issue 8, 2060 PB - MDPI CY - Basel ER -