TY - JOUR A1 - Saadatfar, Hamid A1 - Khosravi, Samiyeh A1 - Hassannataj Joloudari, Javad A1 - Mosavi, Amir A1 - Shamshirband, Shahaboddin T1 - A New K-Nearest Neighbors Classifier for Big Data Based on Efficient Data Pruning JF - Mathematics N2 - The K-nearest neighbors (KNN) machine learning algorithm is a well-known non-parametric classification method. However, like other traditional data mining methods, applying it on big data comes with computational challenges. Indeed, KNN determines the class of a new sample based on the class of its nearest neighbors; however, identifying the neighbors in a large amount of data imposes a large computational cost so that it is no longer applicable by a single computing machine. One of the proposed techniques to make classification methods applicable on large datasets is pruning. LC-KNN is an improved KNN method which first clusters the data into some smaller partitions using the K-means clustering method; and then applies the KNN for each new sample on the partition which its center is the nearest one. However, because the clusters have different shapes and densities, selection of the appropriate cluster is a challenge. In this paper, an approach has been proposed to improve the pruning phase of the LC-KNN method by taking into account these factors. The proposed approach helps to choose a more appropriate cluster of data for looking for the neighbors, thus, increasing the classification accuracy. The performance of the proposed approach is evaluated on different real datasets. The experimental results show the effectiveness of the proposed approach and its higher classification accuracy and lower time cost in comparison to other recent relevant methods. KW - Maschinelles Lernen KW - Machine learning KW - K-nearest neighbors KW - KNN KW - classifier KW - big data KW - clustering KW - cluster shape KW - cluster density KW - classification KW - reinforcement learning KW - data science KW - computation KW - artificial intelligence KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200225-40996 UR - https://www.mdpi.com/2227-7390/8/2/286 VL - 2020 IS - volume 8, issue 2, article 286 PB - MDPI ER - TY - JOUR A1 - Shamshirband, Shahaboddin A1 - Babanezhad, Meisam A1 - Mosavi, Amir A1 - Nabipour, Narjes A1 - Hajnal, Eva A1 - Nadai, Laszlo A1 - Chau, Kwok-Wing T1 - Prediction of flow characteristics in the bubble column reactor by the artificial pheromone-based communication of biological ants JF - Engineering Applications of Computational Fluid Mechanics N2 - A novel combination of the ant colony optimization algorithm (ACO)and computational fluid dynamics (CFD) data is proposed for modeling the multiphase chemical reactors. The proposed intelligent model presents a probabilistic computational strategy for predicting various levels of three-dimensional bubble column reactor (BCR) flow. The results prove an enhanced communication between ant colony prediction and CFD data in different sections of the BCR. KW - Maschinelles Lernen KW - Machine learning KW - Bubble column reactor KW - ant colony optimization algorithm (ACO) KW - flow pattern KW - computational fluid dynamics (CFD) KW - big data KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200227-41013 UR - https://www.tandfonline.com/doi/full/10.1080/19942060.2020.1715842 VL - 2020 IS - volume 14, issue 1 SP - 367 EP - 378 PB - Taylor & Francis ER - TY - JOUR A1 - Nabipour, Narjes A1 - Dehghani, Majid A1 - Mosavi, Amir A1 - Shamshirband, Shahaboddin T1 - Short-Term Hydrological Drought Forecasting Based on Different Nature-Inspired Optimization Algorithms Hybridized With Artificial Neural Networks JF - IEEE Access N2 - Hydrological drought forecasting plays a substantial role in water resources management. Hydrological drought highly affects the water allocation and hydropower generation. In this research, short term hydrological drought forecasted based on the hybridized of novel nature-inspired optimization algorithms and Artificial Neural Networks (ANN). For this purpose, the Standardized Hydrological Drought Index (SHDI) and the Standardized Precipitation Index (SPI) were calculated in one, three, and six aggregated months. Then, three states where proposed for SHDI forecasting, and 36 input-output combinations were extracted based on the cross-correlation analysis. In the next step, newly proposed optimization algorithms, including Grasshopper Optimization Algorithm (GOA), Salp Swarm algorithm (SSA), Biogeography-based optimization (BBO), and Particle Swarm Optimization (PSO) hybridized with the ANN were utilized for SHDI forecasting and the results compared to the conventional ANN. Results indicated that the hybridized model outperformed compared to the conventional ANN. PSO performed better than the other optimization algorithms. The best models forecasted SHDI1 with R2 = 0.68 and RMSE = 0.58, SHDI3 with R 2 = 0.81 and RMSE = 0.45 and SHDI6 with R 2 = 0.82 and RMSE = 0.40. KW - Maschinelles Lernen KW - Machine learning KW - Deep learning KW - Hydrological drought KW - precipitation KW - hydrology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200213-40796 UR - https://ieeexplore.ieee.org/document/8951168 VL - 2020 IS - volume 8 SP - 15210 EP - 15222 PB - IEEE ER - TY - JOUR A1 - Mousavi, Seyed Nasrollah A1 - Steinke Júnior, Renato A1 - Teixeira, Eder Daniel A1 - Bocchiola, Daniele A1 - Nabipour, Narjes A1 - Mosavi, Amir A1 - Shamshirband, Shahaboddin T1 - Predictive Modeling the Free Hydraulic Jumps Pressure through Advanced Statistical Methods JF - Mathematics N2 - Pressure fluctuations beneath hydraulic jumps potentially endanger the stability of stilling basins. This paper deals with the mathematical modeling of the results of laboratory-scale experiments to estimate the extreme pressures. Experiments were carried out on a smooth stilling basin underneath free hydraulic jumps downstream of an Ogee spillway. From the probability distribution of measured instantaneous pressures, pressures with different probabilities could be determined. It was verified that maximum pressure fluctuations, and the negative pressures, are located at the positions near the spillway toe. Also, minimum pressure fluctuations are located at the downstream of hydraulic jumps. It was possible to assess the cumulative curves of pressure data related to the characteristic points along the basin, and different Froude numbers. To benchmark the results, the dimensionless forms of statistical parameters include mean pressures (P*m), the standard deviations of pressure fluctuations (σ*X), pressures with different non-exceedance probabilities (P*k%), and the statistical coefficient of the probability distribution (Nk%) were assessed. It was found that an existing method can be used to interpret the present data, and pressure distribution in similar conditions, by using a new second-order fractional relationships for σ*X, and Nk%. The values of the Nk% coefficient indicated a single mean value for each probability. KW - Maschinelles Lernen KW - Machine learning KW - mathematical modeling KW - extreme pressure KW - hydraulic jump KW - stilling basin KW - standard deviation of pressure fluctuations KW - statistical coeffcient of the probability distribution Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200402-41140 UR - https://www.mdpi.com/2227-7390/8/3/323 VL - 2020 IS - Volume 8, Issue 3, 323 PB - MDPI CY - Basel ER -