TY - JOUR A1 - Kavrakov, Igor A1 - Legatiuk, Dmitrii A1 - Gürlebeck, Klaus A1 - Morgenthal, Guido T1 - A categorical perspective towards aerodynamic models for aeroelastic analyses of bridge decks JF - Royal Society Open Science N2 - Reliable modelling in structural engineering is crucial for the serviceability and safety of structures. A huge variety of aerodynamic models for aeroelastic analyses of bridges poses natural questions on their complexity and thus, quality. Moreover, a direct comparison of aerodynamic models is typically either not possible or senseless, as the models can be based on very different physical assumptions. Therefore, to address the question of principal comparability and complexity of models, a more abstract approach, accounting for the effect of basic physical assumptions, is necessary. This paper presents an application of a recently introduced category theory-based modelling approach to a diverse set of models from bridge aerodynamics. Initially, the categorical approach is extended to allow an adequate description of aerodynamic models. Complexity of the selected aerodynamic models is evaluated, based on which model comparability is established. Finally, the utility of the approach for model comparison and characterisation is demonstrated on an illustrative example from bridge aeroelasticity. The outcome of this study is intended to serve as an alternative framework for model comparison and impact future model assessment studies of mathematical models for engineering applications. KW - Brücke KW - Aerodynamik KW - Aeroelastizität KW - bridge KW - abstract modelling KW - category theory KW - bridge aerodynamics KW - bridge aeroelasticity KW - aerodynamic models KW - model complexity KW - OA-Publikationsfonds2019 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190314-38656 UR - https://royalsocietypublishing.org/doi/10.1098/rsos.181848 IS - Volume 6, Issue 3 ER - TY - JOUR A1 - Al-Yasiri, Zainab Riyadh Shaker A1 - Mutashar, Hayder Majid A1 - Gürlebeck, Klaus A1 - Lahmer, Tom ED - Shafiullah, GM T1 - Damage Sensitive Signals for the Assessment of the Conditions of Wind Turbine Rotor Blades Using Electromagnetic Waves JF - Infrastructures N2 - One of the most important renewable energy technologies used nowadays are wind power turbines. In this paper, we are interested in identifying the operating status of wind turbines, especially rotor blades, by means of multiphysical models. It is a state-of-the-art technology to test mechanical structures with ultrasonic-based methods. However, due to the density and the required high resolution, the testing is performed with high-frequency waves, which cannot penetrate the structure in depth. Therefore, there is a need to adopt techniques in the fields of multiphysical model-based inversion schemes or data-driven structural health monitoring. Before investing effort in the development of such approaches, further insights and approaches are necessary to make the techniques applicable to structures such as wind power plants (blades). Among the expected developments, further accelerations of the so-called “forward codes” for a more efficient implementation of the wave equation could be envisaged. Here, we employ electromagnetic waves for the early detection of cracks. Because in many practical situations, it is not possible to apply techniques from tomography (characterized by multiple sources and sensor pairs), we focus here on the question of whether the existence of cracks can be determined by using only one source for the sent waves. KW - Windkraftwerk KW - Rotorblatt KW - Elektrostatische Welle KW - MATLAB KW - wind turbine rotor blades KW - electromagnetic waves KW - crack detection KW - Empire XPU 8.01 KW - Matlab KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220831-47093 UR - https://www.mdpi.com/2412-3811/7/8/104 VL - 2022 IS - Volume 7, Issue 8 (August 2022), article 104 PB - MDPI CY - Basel ER -