TY - JOUR A1 - Artus, Mathias A1 - Koch, Christian T1 - Object-Oriented Damage Information Modeling Concepts and Implementation for Bridge Inspection JF - Journal of Computing in Civil Engineering N2 - Bridges are designed to last for more than 50 years and consume up to 50% of their life-cycle costs during their operation phase. Several inspections and assessment actions are executed during this period. Bridge and damage information must be gathered, digitized, and exchanged between different stakeholders. Currently, the inspection and assessment practices rely on paper-based data collection and exchange, which is time-consuming and error-prone, and leads to loss of information. Storing and exchanging damage and building information in a digital format may lower costs and errors during inspection and assessment and support future needs, for example, immediate simulations regarding performance assessment, automated maintenance planning, and mixed reality inspections. This study focused on the concept for modeling damage information to support bridge reviews and structural analysis. Starting from the definition of multiple use cases and related requirements, the data model for damage information is defined independently from the subsequent implementation. In the next step, the implementation via an established standard is explained. Functional tests aim to identify problems in the concept and implementation. To show the capability of the final model, two example use cases are illustrated: the inspection review of the entire bridge and a finite-element analysis of a single component. Main results are the definition of necessary damage data, an object-oriented damage model, which supports multiple use cases, and the implementation of the model in a standard. Furthermore, the tests have shown that the standard is suitable to deliver damage information; however, several software programs lack proper implementation of the standard. KW - Building Information Modeling KW - Brücke KW - Inspektion KW - Produktdaten KW - Objektorientierung KW - Building Information Modeling KW - Bridge KW - Inspection KW - Damage Information Modeling KW - Damage Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220826-47087 UR - https://ascelibrary.org/doi/10.1061/%28ASCE%29CP.1943-5487.0001030 VL - 2022 IS - Volume 36, issue 6 SP - 1 EP - 21 ER - TY - JOUR A1 - Artus, Mathias A1 - Alabassy, Mohamed Said Helmy A1 - Koch, Christian T1 - A BIM Based Framework for Damage Segmentation, Modeling, and Visualization Using IFC JF - Applied Sciences N2 - Paper-based data acquisition and manual transfer between incompatible software or data formats during inspections of bridges, as done currently, are time-consuming, error-prone, cumbersome, and lead to information loss. A fully digitized workflow using open data formats would reduce data loss, efforts, and the costs of future inspections. On the one hand, existing studies proposed methods to automatize data acquisition and visualization for inspections. These studies lack an open standard to make the gathered data available for other processes. On the other hand, several studies discuss data structures for exchanging damage information among different stakeholders. However, those studies do not cover the process of automatic data acquisition and transfer. This study focuses on a framework that incorporates automatic damage data acquisition, transfer, and a damage information model for data exchange. This enables inspectors to use damage data for subsequent analyses and simulations. The proposed framework shows the potentials for a comprehensive damage information model and related (semi-)automatic data acquisition and processing. KW - Building Information Modeling KW - Brücke KW - Inspektion KW - Maschinelles Lernen KW - Bildverarbeitung KW - Building Information Modeling KW - Bridge KW - Inspection KW - Damage Segmentation KW - Machine Learning KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220314-46059 UR - https://www.mdpi.com/2076-3417/12/6/2772 VL - 2022 IS - volume 12, issue 6, article 2772 SP - 1 EP - 24 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kraus, Matthias A1 - Crişan, Nicolae-Andrei A1 - Wittor, Björn T1 - Stability Study of Cantilever-Beams – Numerical Analysis and Analytical Calculation (LTB) JF - ce/papers N2 - According to Eurocode, the computation of bending strength for steel cantilever beams is a straightforward process. The approach is based on an Ayrton-Perry formula adaptation of buckling curves for steel members in compression, which involves the computation of an elastic critical buckling load for considering the instability. NCCI documents offer a simplified formula to determine the critical bending moment for cantilevers beams with symmetric cross-section. Besides the NCCI recommendations, other approaches, e.g. research literature or Finite-Element-Analysis, may be employed to determine critical buckling loads. However, in certain cases they render different results. Present paper summarizes and compares the abovementioned analytical and numerical approaches for determining critical loads and it exemplarily analyses corresponding cantilever beam capacities using numerical approaches based on plastic zones theory (GMNIA). KW - Träger KW - Stahl KW - Biegefestigkeit KW - Finite-Elemente-Methode KW - Stahlträger KW - Knicklast KW - Freiträgerkapazität KW - Eurocode Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220112-45637 UR - https://onlinelibrary.wiley.com/doi/full/10.1002/cepa.1539 VL - 2021 IS - Volume 4, issue 2-4 SP - 2199 EP - 2206 PB - Ernst & Sohn, a Wiley brand CY - Berlin ER - TY - JOUR A1 - Ansari, Meisam A1 - Zacharias, Christin A1 - Könke, Carsten T1 - Metaconcrete: An Experimental Study on the Impact of the Core-Coating Inclusions on Mechanical Vibration JF - materials N2 - Resonance vibration of structures is an unpleasant incident that can be conventionally avoided by using a Tuned Mass Damper (TMD). The scope of this paper contains the utilization of engineered inclusions in concrete as damping aggregates to suppress resonance vibration similar to a TMD. The inclusions are composed of a stainless-steel core with a spherical shape coated with silicone. This configuration has been the subject of several studies and it is best known as Metaconcrete. This paper presents the procedure of a free vibration test conducted with two small-scaled concrete beams. The beams exhibited a higher damping ratio after the core-coating element was secured to them. Subsequently, two meso-models of small-scaled beams were created: one representing conventional concrete and the other representing concrete with the core-coating inclusions. The frequency response curves of the models were obtained. The change in the response peak verified the ability of the inclusions to suppress the resonance vibration. This study concludes that the core-coating inclusions can be utilized in concrete as damping aggregates. KW - Beton KW - Schwingungsdämpfung KW - metaconcrete KW - damping aggregate KW - vibration absorber Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230315-49370 UR - https://www.mdpi.com/1996-1944/16/5/1836 VL - 2023 IS - Volume 16, Issue 5, article 1836 SP - 1 EP - 18 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ibanez, Stalin A1 - Kraus, Matthias T1 - A Numerical Approach for Plastic Cross Cross-Sectional Analyses of Steel Members JF - ce/papers N2 - Global structural analyses in civil engineering are usually performed considering linear-elastic material behavior. However, for steel structures, a certain degree of plasticization depending on the member classification may be considered. Corresponding plastic analyses taking material nonlinearities into account are effectively realized using numerical methods. Frequently applied finite elements of two and three-dimensional models evaluate the plasticity at defined nodes using a yield surface, i.e. by a yield condition, hardening rule, and flow rule. Corresponding calculations are connected to a large numerical as well as time-consuming effort and they do not rely on the theoretical background of beam theory, to which the regulations of standards mainly correspond. For that reason, methods using beam elements (one-dimensional) combined with cross-sectional analyses are commonly applied for steel members in terms of plastic zones theories. In these approaches, plasticization is in general assessed by means of axial stress only. In this paper, more precise numerical representation of the combined stress states, i.e. axial and shear stresses, is presented and results of the proposed approach are validated and discussed. KW - Stahlkonstruktion KW - Plastizität KW - Strukturanalyse KW - Stahlbauteil KW - Axialspannung KW - Finite-Elemente-Methode Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220112-45622 UR - https://onlinelibrary.wiley.com/doi/full/10.1002/cepa.1527 VL - 2021 IS - Volume 4, issue 2-4 SP - 2098 EP - 2106 PB - Ernst & Sohn, a Wiley brand CY - Berlin ER - TY - JOUR A1 - Ansari, Meisam A1 - Tartaglione, Fabiola A1 - Könke, Carsten T1 - Experimental Validation of Dynamic Response of Small-Scale Metaconcrete Beams at Resonance Vibration JF - materials N2 - Structures and their components experience substantially large vibration amplitudes at resonance, which can cause their failure. The scope of this study is the utilization of silicone-coated steel balls in concrete as damping aggregates to suppress the resonance vibration. The heavy steel cores oscillate with a frequency close to the resonance frequency of the structure. Due to the phase difference between the vibrations of the cores and the structure, the cores counteract the vibration of the structure. The core-coating inclusions are randomly distributed in concrete similar to standard aggregates. This mixture is referred to as metaconcrete. The main goal of this work is to validate the ability of the inclusions to suppress mechanical vibration through laboratory experiments. For this purpose, two small-scale metaconcrete beams were cast and tested. In a free vibration test, the metaconcrete beams exhibited a larger damping ratio compared to a similar beam cast from conventional concrete. The vibration amplitudes of the metaconcrete beams at resonance were measured with a frequency sweep test. In comparison with the conventional concrete beam, both metaconcrete beams demonstrated smaller vibration amplitudes. Both experiments verified an improvement in the dynamic response of the metaconcrete beams at resonance vibration. KW - Beton KW - metaconcrete KW - Schwingungsdämpfung KW - damping aggregate KW - vibration absorber KW - free vibration test KW - frequency sweep test Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230818-64154 UR - https://www.mdpi.com/1996-1944/16/14/5029 VL - 2023 IS - volume 16, issue 14, article 5029 SP - 1 EP - 17 PB - MDPI CY - Basel ER -