TY - JOUR A1 - Völker, Conrad A1 - Mämpel, Silvio A1 - Kornadt, Oliver T1 - Measuring the human body’s micro‐climate using a thermal manikin JF - Indoor Air N2 - The human body is surrounded by a micro‐climate which results from its convective release of heat. In this study, the air temperature and flow velocity of this micro‐climate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the micro‐climate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the micro‐climate shape strongly depends not only on the body segment, but also on boundary conditions: the higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the air flow in the micro‐climate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient. KW - Raumklima KW - Mikroklima KW - Wärmeübertragung KW - Strömungsmechanik KW - thermal manikin KW - climate chamber KW - micro climate KW - heat transfer coefficient KW - CFD KW - thermography Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181025-38153 UR - https://onlinelibrary.wiley.com/doi/abs/10.1111/ina.12112 N1 - This is the peer reviewed version of the following article: "Measuring the human body’s micro‐climate using a thermal manikin", which has been published in final form at https://doi.org/10.1111/ina.12112. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. IS - 24, 6 SP - 567 EP - 579 ER - TY - JOUR A1 - Völker, Conrad A1 - Kornadt, Oliver A1 - Ostry, Milan T1 - Temperature reduction due to the application of phase change materials JF - Energy and Buildings N2 - Overheating is a major problem in many modern buildings due to the utilization of lightweight constructions with low heat storing capacity. A possible answer to this problem is the emplacement of phase change materials (PCM), thereby increasing the thermal mass of a building. These materials change their state of aggregation within a defined temperature range. Useful PCM for buildings show a phase transition from solid to liquid and vice versa. The thermal mass of the materials is increased by the latent heat. A modified gypsum plaster and a salt mixture were chosen as two materials for the study of their impact on room temperature reduction. For realistic investigations, test rooms were erected where measurements were carried out under different conditions such as temporary air change, alternate internal heat gains or clouding. The experimental data was finally reproduced by dint of a mathematical model. KW - Raumklima KW - Paraffin KW - Phasenumwandlung KW - Gebäude KW - Überhitzung KW - summer overheating in buildings KW - phase change materials KW - PCM KW - Paraffin KW - salt hydrate KW - numerical simulation KW - mathematical model KW - heat storage Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181025-38166 UR - https://www.sciencedirect.com/science/article/pii/S0378778807002034 N1 - The following article appeared in the journal Energy and Buildings 40 (5) 2008, 937‐944 and may be found at https://doi.org/10.1016/j.enbuild.2007.07.008. IS - 40, 5 SP - 937 EP - 944 ER - TY - THES A1 - Tatarin, René T1 - Charakterisieren struktureller Veränderungen in zementgebundenen Baustoffen durch akustische zerstörungsfreie Prüfverfahren N2 - Im Rahmen dieser Arbeit wird das Charakterisieren struktureller Veränderungen zementgebundener Baustoffe durch zwei auf dem Ultraschall-Transmissionsverfahren beruhenden Methoden der zerstörungsfreien Prüfung (ZfP) mit mechanischen Wellen vorgenommen. Zur kontinuierlichen Charakterisierung der Erstarrung und Erhärtung frischer zementgebundener Systeme wird ein auf Ultraschallsensoren für Longitudinal- und Scherwellen basierendes Messsystem in Kombination mit zugehörigen Verfahrensweisen zur Datenauswertung konzipiert, charakterisiert und angewandt. Gegenüber der bislang üblichen alleinigen Bewertung der Verfestigung anhand indirekter Ultraschallparameter wie Ausbreitungsgeschwindigkeit, Signalenergie oder Frequenzgehalt der Longitudinalwelle lässt sich damit eine direkte, sensible Erfassung der sich während der Strukturbildung entwickelnden dynamischen elastischen Eigenschaften auf der Basis primärer physikalischer Werkstoffparameter erreichen. Insbesondere Scherwellen und der dynamische Schubmodul sind geeignet, den graduellen Übergang zum Festkörper mit Überschreiten der Perkolationsschwelle sensibel und unabhängig vom Luftgehalt zu erfassen. Die zeitliche Entwicklung der dynamischen elastischen Eigenschaften, die Strukturbildungsraten sowie die daraus extrahierten diskreten Ergebnisparameter ermöglichen eine vergleichende quantitative Charakterisierung der Strukturbildung zementgebundener Baustoffe aus mechanischer Sicht. Dabei lassen sich typische, oft unvermeidbare Unterschiede in der Zusammensetzung der Versuchsmischungen berücksichtigen. Der Einsatz laserbasierter Methoden zur Anregung und Erfassung von mechanischen Wellen und deren Kombination zu Laser-Ultraschall zielt darauf ab, die mit der Anwendung des konventionellen Ultraschall-Transmissionsverfahrens verbundenen Nachteile zu eliminieren. Diese resultieren aus der Sensorgeometrie, der mechanischen Ankopplung und bei einer Vielzahl von Oberflächenpunkten aus einem hohen prüftechnischen Aufwand. Die laserbasierte, interferometrische Erfassung mechanischer Wellen ist gegenüber Ultraschallsensoren rauschbehaftet und vergleichsweise unsensibel. Als wesentliche Voraussetzung der scannenden Anwendung von Laser-Ultraschall auf zementgebundene Baustoffe erfolgen systematische experimentelle Untersuchungen zur laserinduzierten ablativen Anregung. Diese sollen zum Verständnis des Anregungsmechanismus unmittelbar auf den Oberflächen von zementgebundenen Baustoffen, Gesteinskörnungen und metallischen Werkstoffen beitragen, relevante Einflussfaktoren aus den charakteristischen Materialeigenschaften identifizieren, geeignete Prozessparameter gewinnen und die Verfahrensgrenzen aufzeigen. Unter Einsatz von Longitudinalwellen erfolgt die Anwendung von Laser-Ultraschall zur zeit- und ortsaufgelösten Charakterisierung der Strukturbildung und Homogenität frischer sowie erhärteter Proben zementgebundener Baustoffe. Während der Strukturbildung wird erstmals eine simultane berührungslose Erfassung von Longitudinal- und Scherwellen vorgenommen. Unter Anwendung von tomographischen Methoden (2D-Laufzeit¬tomo¬graphie) werden überlagerungsfreie Informationen zur räumlichen Verteilung struktureller Gefügeveränderungen anhand der longitudinalen Ausbreitungsgeschwindigkeit bzw. des relativen dynamischen Elastizitätsmoduls innerhalb von virtuellen Schnittebenen geschädigter Probekörper gewonnen. Als beton-schädigende Mechanismen werden exemplarisch der kombinierte Frost-Tausalz-Angriff sowie die Alkali-Kieselsäure-Reaktion (AKR) herangezogen. Die im Rahmen dieser Arbeit entwickelten Verfahren der zerstörungsfreien Prüfung bieten erweiterte Möglichkeiten zur Charakterisierung zementgebundener Baustoffe und deren strukturellen Veränderungen und lassen sich zielgerichtet in der Werkstoffentwicklung, bei der Qualitätssicherung sowie zur Analyse von Schadensprozessen und -ursachen einsetzen. N2 - In this research, structural changes of cement-based building materials are characterized using two ultrasonic transmission-based methods of non-destructive testing (NDT) with mechanical waves. For continuous characterization of setting and hardening of fresh cementitious materials a measurement system is designed, characterized and applied based on ultrasonic compressional and shear wave transducers in combination with associated data evaluation procedures. In contrast to common non-destructive testing of setting and hardening by means of solely indirect ultrasonic parameters such as pulse velocity, signal energy or frequency content of compressional waves, a direct sensitive recording of dynamic elastic properties can be achieved during the structure formation on the basis of primary physical material parameters. Especially, shear waves and the dynamic shear modulus are suitable to capture the gradual transition to a solid with exceeding percolation threshold in a sensitive manner and independent of air content. The development of dynamic elastic properties, the structure formation rates and the extracted discrete result parameters enable a comparative and quantitative analysis of the structural formation of fresh cementitious materials from a mechanical point of view. As an advantage, often unavoidable differences in the composition of test blends can be taken into account. The application of laser-based techniques for generation and detection of mechanical waves and their combination to laser-ultrasonics eliminates the disadvantages associated with the application of conventional ultrasonic through-transmission techniques. These result from sensor geometry, mechanical coupling and, in case of numerous surface points, due to a high inspection time and effort. Furthermore, the laser-based interferometric detection of mechanical waves is noisy and relatively insensitive compared to application of ultrasonic sensors. As an essential prerequisite, systematic experimental investigations of laser-induced ablative generation are carried out for the scanning application of laser-ultrasonics on cement-based building materials. These investigations contribute to the understanding of the excitation mechanism directly on the surfaces of concrete, natural aggregates and metallic targets and to the identification of relevant influencing factors from the characteristic material properties. By gathering optimized process parameters, the limitations of laser-ultrasonics to concrete are shown. Laser-ultrasonics is applied using compressional waves for time- and space-resolved characterization of the structure formation and homogeneity of fresh and hardened specimen of cement-based building materials. During the structure formation process, the simultaneous contactless acquisition of compressional and shear waves is carried out for the first time. With the implementation of tomographic methods (2D travel-time tomography) it is possible to obtain superposition-free information on the spatial distribution of microstructural changes by means of the longitudinal ultrasonic pulse velocity or the relative dynamic modulus of elasticity within virtual cross-sections of damaged specimens. The combined freeze-thaw de-icing salt attack as well as the alkali-silica reaction (ASR) are investigated as mechanisms of concrete damage. The methods of non-destructive testing developed within the scope of this study offer extended possibilities for the characterization of cement-based building materials and their structural changes and can be applied in a targeted manner in materials development, quality control and in analysis of damage processes and causes. KW - Beton KW - Hydratation KW - Ultraschall KW - Zerstörungsfreie Werkstoffprüfung KW - Lasertechnologie KW - Laser-Ultraschall KW - elastische Parameter KW - Tomographie KW - Strukturbildung KW - Dauerhaftigkeit Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220215-45920 SN - 978-3-7369-7575-0 PB - Cuvillier Verlag CY - Göttingen ER - TY - JOUR A1 - Mosavi, Amir A1 - Najafi, Bahman A1 - Faizollahzadeh Ardabili, Sina A1 - Shamshirband, Shahaboddin A1 - Rabczuk, Timon T1 - An Intelligent Artificial Neural Network-Response Surface Methodology Method for Accessing the Optimum Biodiesel and Diesel Fuel Blending Conditions in a Diesel Engine from the Viewpoint of Exergy and Energy Analysis JF - Energies N2 - Biodiesel, as the main alternative fuel to diesel fuel which is produced from renewable and available resources, improves the engine emissions during combustion in diesel engines. In this study, the biodiesel is produced initially from waste cooking oil (WCO). The fuel samples are applied in a diesel engine and the engine performance has been considered from the viewpoint of exergy and energy approaches. Engine tests are performed at a constant 1500 rpm speed with various loads and fuel samples. The obtained experimental data are also applied to develop an artificial neural network (ANN) model. Response surface methodology (RSM) is employed to optimize the exergy and energy efficiencies. Based on the results of the energy analysis, optimal engine performance is obtained at 80% of full load in presence of B10 and B20 fuels. However, based on the exergy analysis results, optimal engine performance is obtained at 80% of full load in presence of B90 and B100 fuels. The optimum values of exergy and energy efficiencies are in the range of 25–30% of full load, which is the same as the calculated range obtained from mathematical modeling. KW - Biodiesel KW - ANN modeling KW - biodiesel KW - Artificial Intelligence KW - diesel engines KW - energy, exergy KW - mathematical modeling KW - OA-Publikationsfonds2018 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20180507-37467 UR - http://www.mdpi.com/1996-1073/11/4/860 VL - 2018 IS - 11, 4 PB - MDPI CY - Basel ER - TY - CHAP A1 - Dokhanchi, Najmeh Sadat A1 - Arnold, Jörg A1 - Vogel, Albert A1 - Völker, Conrad T1 - Acoustic Travel-Time Tomography: Optimal Positioning of Transceiver and Maximal Sound-Ray Coverage of the Room T2 - Fortschritte der Akustik - DAGA 2019 N2 - Acoustic travel-time tomography (ATOM) determines the distribution of the temperature in a propagation medium by measuring the travel-time of acoustic signals between transmitters and receivers. To employ ATOM for indoor climate measurements, the impulse responses have been measured in the climate chamber lab of the Bauhaus-University Weimar and compared with the theoretical results of its image source model (ISM). A challenging task is distinguishing the reflections of interest in the reflectogram when the sound rays have similar travel-times. This paper presents a numerical method to address this problem by finding optimal positions of transmitter and receiver, since they have a direct impact on the distribution of travel times. These optimal positions have the minimum number of simultaneous arrival time within a threshold level. Moreover, for the tomographic reconstruction, when some of the voxels remain empty of sound-rays, it leads to inaccurate determination of the air temperature within those voxels. Based on the presented numerical method, the number of empty tomographic voxels are minimized to ensure the best sound-ray coverage of the room. Subsequently, a spatial temperature distribution is estimated by simultaneous iterative reconstruction technique (SIRT). The experimental set-up in the climate chamber verifies the simulation results. KW - Bauphysik KW - Acoustic Travel-Time Tomography KW - Bauklimatik KW - Akustische Tomographie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190408-38778 UR - https://www.dega-akustik.de/publikationen/online-proceedings/ N1 - This conference paper has been submitted to the DAGA 2019. Thus, the original paper first is published in the "Fortschritte der Akustik - DAGA 2019" ER -