TY - THES A1 - Abeltshauser, Rainer T1 - Identification and separation of physical effects of coupled systems by using defined model abstractions N2 - The thesis investigates at the computer aided simulation process for operational vibration analysis of complex coupled systems. As part of the internal methods project “Absolute Values” of the BMW Group, the thesis deals with the analysis of the structural dynamic interactions and excitation interactions. The overarching aim of the methods project is to predict the operational vibrations of engines. Simulations are usually used to analyze technical aspects (e. g. operational vibrations, strength, ...) of single components in the industrial development. The boundary conditions of submodels are mostly based on experiences. So the interactions with neighboring components and systems are neglected. To get physically more realistic results but still efficient simulations, this work wants to support the engineer during the preprocessing phase by useful criteria. At first suitable abstraction levels based on the existing literature are defined to identify structural dynamic interactions and excitation interactions of coupled systems. So it is possible to separate different effects of the coupled subsystems. On this basis, criteria are derived to assess the influence of interactions between the considered systems. These criteria can be used during the preprocessing phase and help the engineer to build up efficient models with respect to the interactions with neighboring systems. The method was developed by using several models with different complexity levels. Furthermore, the method is proved for the application in the industrial environment by using the example of a current combustion engine. T2 - Identifikation und Separation physikalischer Effekte von gekoppelten Systemen mittels definierter Modellabstraktionen T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2017,1 KW - Strukturdynamik KW - Wechselwirkung KW - Schwingung KW - Berechnung KW - Numerische Berechnung KW - Modellbildung KW - Schwingungsanalyse KW - Simulationsprozess Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28600 ER - TY - THES A1 - Higuchi, Shoko T1 - Cost-Benefit Based Maintenance Optimization for Deteriorating Structures N2 - In recent years increasingly consideration has been given to the lifetime extension of existing structures. This is based on the fact that a growing percentage of civil infrastructure as well as buildings is threatened by obsolescence and that due to simple monetary reasons this can no longer be countered by simply re-building everything anew. Hence maintenance interventions are required which allow partial or complete structural rehabilitation. However, maintenance interventions have to be economically reasonable, that is, maintenance expenditures have to be outweighed by expected future benefits. Is this not the case, then indeed the structure is obsolete - at least in its current functional, economic, technical, or social configuration - and innovative alternatives have to be evaluated. An optimization formulation for planning maintenance interventions based on cost-benefit criteria is proposed herein. The underlying formulation is as follows: (a) between maintenance interventions structural deterioration is described as a random process; (b) maintenance interventions can take place anytime throughout lifetime and comprise the rehabilitation of all deterioration states above a certain minimum level; and (c) maintenance interventions are optimized by taking into account all expected life-cycle costs (construction, failure, inspection and state-dependent repair costs) as well as state- or time-dependent benefit rates. The optimization is performed by an evolutionary algorithm. The proposed approach also allows to determine optimal lifetimes and acceptable failure rates. Numerical examples demonstrate the importance of defining benefit rates explicitly. It is shown, that the optimal solution to maintenance interventions requires to take action before reaching the acceptable failure rate or the zero expected net benefit rate level. Deferring decisions with respect to maintenance not only results, in general, in higher losses, but also results in overly hazardous structures. N2 - Die Verlängerung der Nutzungsdauer bestehender Tragwerke hat in den letzten Jahren zunehmend an Bedeutung gewonnen. Dies liegt in der Tatsache begründet, dass ein nicht unerheblicher Anteil der Infrastruktur wie auch an Gebäuden durch Überalterung bedroht ist, und dass es aus rein wirtschaftlichen Gründen nicht länger möglich ist diesen Zustand durch Neubau zu entgegnen. Es sind also Instandhaltungsstrategien notwendig, die eine teilweise oder vollständige Revitalisierung von Tragwerken erlauben. Allerdings müssen diese Instandhaltungsstrategien auch einen volkswirtschaftlichen Sinn haben, das heißt die entsprechenden Aufwendungen müssen durch einen zukünftig zu erwartenden Nutzen aufgewogen werden. Ist dies nicht der Fall, so sind die Tragwerke in der Tat veraltet - zumindest in ihrer momentanen funktionellen, wirtschaftlichen, technischen oder gesellschaftlichen Bedeutung - und Alternativvorschläge müssen untersucht werden. In dieser Arbeit wird die Planung von Instandhaltungsmaßnahmen als Optimierungsaufgabe unter Verwendung von Kosten-Nutzen-Kriterien formuliert. Die zugrunde liegende Beschreibung ist wie folgt: (a) die Abnahme der Tragfähigkeit zwischen den Instandhaltungsmaßnahmen wird als Zufallsprozess beschrieben; (b) die Instandhaltungsmaßnahmen können jederzeit während der Nutzungsdauer stattfinden und bestehen in der Reparatur von Schadenszuständen eines gewissen Niveaus; (c) die Instandhaltungsmaßnahmen werden hinsichtlich aller Lebensdauerkosten (Errichtungs-, Versagens-, Inspektions- und schadensabhängiger Reparaturkosten) sowie des zustands- und zeitabhängigen Nutzens optimiert. Die Optimierung erfolgt mit Hilfe eines evolutionären Algorithmus. Die vorgeschlagene Formulierung erlaubt darüber hinaus auch die Bestimmung von optimalen Nutzungsdauern und zulässigen Versagensraten. Die Rechenbeispiele weisen die Bedeutung einer expliziten Ausweisung des Nutzens aus. Es wird gezeigt, dass eine optimale Strategie für Instandhaltungsmaßnahmen ein aktiv werden vor Erreichen zulässiger Versagensraten oder dem Verschwinden des Nettonutzens je Zeiteinheit erfordert. Das Aufschieben von Entscheidungen bezüglich der Durchführung von Instandhaltungsmaßnahmen zieht in der Regel nicht nur höhere Folgekosten nach sich, sondern resultiert auch in Tragwerke mit unzulässig hohem Gefährdungspotential. T2 - Kosten-Nutzen orientierte Optimierung von Instandhaltungsmaßnahmen für alternde Tragwerke KW - Kosten-Nutzen-Analyse KW - Zuverlässigkeitstheorie KW - Optimierung KW - Instandhaltung KW - Markov-Kette mit stetiger Zeit KW - Cost-Benefit Analysis KW - Reliability Theory KW - Optimization KW - Rehabilitation KW - Continuous-Time Markov Chain Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20080513-13616 ER - TY - THES A1 - Will, Johannes T1 - Beitrag zur Standsicherheitsberechnung im geklüfteten Fels in der Kontinuums- und Diskontinuumsmechanik unter Verwendung impliziter und expliziter Berechnungsstrategien T1 - Structural safety analysis for jointed rock with continuum and discontinuum mechanics in implizit and explizit codes KW - Staumauer KW - Standsicherheit KW - Klüftung KW - Finite-Elemente-Methode KW - Diskrete-Elemente-Methode KW - Kontinuumsmechanik KW - Diskontinuumsmechanik KW - jointed rock KW - continuum mechanics KW - diskontinuum mechanics Y1 - 1999 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20040310-613 ER - TY - THES A1 - Unger, Jörg F. T1 - Neural networks in a multiscale approach for concrete N2 - From a macroscopic point of view, failure within concrete structures is characterized by the initiation and propagation of cracks. In the first part of the thesis, a methodology for macroscopic crack growth simulations for concrete structures using a cohesive discrete crack approach based on the extended finite element method is introduced. Particular attention is turned to the investigation of criteria for crack initiation and crack growth. A drawback of the macroscopic simulation is that the real physical phenomena leading to the nonlinear behavior are only modeled phenomenologically. For concrete, the nonlinear behavior is characterized by the initiation of microcracks which coalesce into macroscopic cracks. In order to obtain a higher resolution of this failure zones, a mesoscale model for concrete is developed that models particles, mortar matrix and the interfacial transition zone (ITZ) explicitly. The essential features are a representation of particles using a prescribed grading curve, a material formulation based on a cohesive approach for the ITZ and a combined model with damage and plasticity for the mortar matrix. Compared to numerical simulations, the response of real structures exhibits a stochastic scatter. This is e.g. due to the intrinsic heterogeneities of the structure. For mesoscale models, these intrinsic heterogeneities are simulated by using a random distribution of particles and by a simulation of spatially variable material parameters using random fields. There are two major problems related to numerical simulations on the mesoscale. First of all, the material parameters for the constitutive description of the materials are often difficult to measure directly. In order to estimate material parameters from macroscopic experiments, a parameter identification procedure based on Bayesian neural networks is developed which is universally applicable to any parameter identification problem in numerical simulations based on experimental results. This approach offers information about the most probable set of material parameters based on experimental data and information about the accuracy of the estimate. Consequently, this approach can be used a priori to determine a set of experiments to be carried out in order to fit the parameters of a numerical model to experimental data. The second problem is the computational effort required for mesoscale simulations of a full macroscopic structure. For this purpose, a coupling between mesoscale and macroscale model is developed. Representative mesoscale simulations are used to train a metamodel that is finally used as a constitutive model in a macroscopic simulation. Special focus is placed on the ability of appropriately simulating unloading. N2 - Makroskopisch betrachtet kann das Versagen von Beton durch die Entstehung und das Wachstum von Rissen beschrieben werden. Im ersten Teil der Arbeit wird eine Methode zur Simulation der makroskopischen Rissentwicklung von Beton unter Verwendung von kohäsiven diskreten Rissen basierend auf der erweiterten Finiten Elemente Methode vorgestellt. Besondere Bedeutung liegt dabei auf der Untersuchung von Kriterien zur Rissentstehung und zum Risswachstum. Ein Nachteil von makroskopischen Simulationen liegt in der nur phänomenologischen Berücksichtigung der tatsächlichen Vorgänge. Nichtlineares Verhalten von Beton ist durch die Entstehung von Mikrorissen gekennzeichnet, die bei weiterer Belastung zu makroskopischen Rissen zusammenwachsen. Um die Versagenszone realitätsnah abbilden zu können, wurde ein Mesoskalenmodell von Beton entwickelt, welches Zuschläge, Matrix und Übergangszone zwischen beiden Materialien (ITZ) direkt abbildet. Hauptmerkmal sind die Simulation der Zuschläge nach einer Sieblinie, eine kohäsive Materialformulierung der ITZ und ein kombiniertes Model aus Schädigung und Plastizität für das Matrixmaterial. Im Gegensatz zu numerischen Simulationen ist die Systemantwort reeller Strukturen eine unscharfe Größe. Dies liegt u.a. an Heterogenitäten innerhalb der Struktur, die im Rahmen der Arbeit durch eine zufällige Verteilung der Zuschläge und über räumlich variierende Materialparameter unter Verwendung von Zufallsfeldern simuliert werden. Zwei Hauptprobleme sind bei den Mesoskalensimulationen aufgetreten. Einerseits sind Materialparameter auf der Mesoskala oft schwer zu bestimmen. Deswegen wurde eine Methode basierend auf Bayes neuronalen Netzen entwickelt, die eine Parameteridentifikation unter Verwendung von makroskopischen Versuchen erlaubt. Diese Methode ist aber universell anwendbar auf alle Parameteridentifikationsprobleme in numerischen Simulationen basierend auf experimentellen Daten. Der Ansatz liefert sowohl Informationen über den wahrscheinlichsten Parametersatz des Models zur numerischen Simulation eines Experiments als auch eine Einschätzung der Genauigkeit dieses Schätzers. Die Methode kann auch verwendet werden, um a priori einen Satz von Experimenten auszuwählen der notwendig ist, um die Parameter eines numerischen Modells zu bestimmen. Ein zweites Problem ist der numerische Aufwand von Mesoskalensimulationen für makroskopische Strukturen. Aus diesem Grund wurde eine Kopplungsstrategie zwischen Meso- und Makromodell entwickelt, bei dem repräsentative Simulationen auf der Mesoebene verwendet werden, um ein Metamodell zu generieren, welches dann die Materialformulierung in einer makroskopischen Simulation darstellt. Ein Fokus liegt dabei auf der korrekten Abbildung von Entlastungen. T2 - Neuronale Netze in einem Multiskalenansatz für Beton T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2009,1 KW - Beton KW - Mehrskalenmodell KW - Mehrskalenanalyse KW - Neuronales Netz KW - Monte-Carlo-Simulation KW - Simulation KW - Monte-Carlo-Integration KW - Kontinuierliche Simul KW - Bayes neuronale Netze KW - Parameteridentification KW - Bayesian neural networks KW - parameter identification Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20090626-14763 ER - TY - THES A1 - Marschetzky, Manuela T1 - Einfluss von Alkalisalzen und Fließmitteln auf die Hydratation von Calciumsulfathalbhydrat N2 - In der praktischen Anwendung werden den Calciumsulfatbindemitteln Kombinationen verschiedenster Zusätze beigegeben. Ein Verständnis für die Wirkungsweise der verschiedenen Zusätze wird folglich mit steigender Komplexität moderner Bindemittelrezepturen zunehmend wichtiger. In der vorliegenden Arbeit werden die Auswirkungen von Alkalisalzen und Fließmitteln auf die verschiedenen Phasen der Hydratation von Calciumsulfathalbhydrat systematisch analysiert und anschließend diskutiert. Im ersten Teil der Arbeit wird gezeigt, dass Alkalisulfate und Alkalichloride die Hydratation von Calciumsulfathalbhydrat in unterschiedlicher Weise beeinflussen. Die Beschleunigungswirkung der gleichionigen Zusätzen K2SO4 und Na2SO4 wird sowohl durch eine verbesserte Keimbildung als auch durch einen Anstieg der Kristallwachstumsgeschwindigkeit verursacht. Während Alkalisulfate die Dihydratkeimbildung begünstigen, wird diese bei Zugabe von KCl und NaCl verzögert. Ein Beschleunigungseffekt setzt erst später in der Phase des Kristallwachstums ein. Die Wirkung der zugegebenen Ionen lässt sich entsprechend der Hofmeister-Serie einordnen. Der zweite Teil der vorliegenden Arbeit präsentiert eine systematische Betrachtung der Wirkungsweise dreier Fließmittelgruppen im Calciumsulfatsystem (Polykondensat, Polycarboxylatether, Kammpolymer mit Phosphatgruppen). Untersuchungen zur Verflüssigungswirkung der Fließmittel zeigen, dass diese in der Reihenfolge Polykondensat < Polycarboxylatether < Kammpolymer mit Phosphatgruppen zunimmt. Eine direkte Korrelation zwischen Verflüssigungswirkung und Adsorptionsneigung besteht nicht. Neben den gewünschten Effekten weisen Fließmittel häufig auch eine Verzögerung der Hydratation des Bindemittels als unerwünschte Nebenwirkung auf. Ursächlich für diese fließmittelinduzierte Verzögerung ist eine Behinderung der Keimbildung und des Kristallwachstums. Untersuchungen zur Auflösung von Calciumsulfathalbhydrat zeigen eine Behinderung des Auflösungsprozesses in Anwesenheit der Fließmittel. Die Ergebnisse lassen eine partielle Belegung der Halbhydratoberflächen mit Fließmittelmolekülen vermuten. Die veränderte Morphologie der Dihydratkristalle verweist auf eine selektive Belegung der Dihydratoberflächen mit Fließmittelmolekülen. KW - Calciumsulfat KW - Alkalisulfate KW - Gips KW - Verflüssigung KW - Calciumsulfatbindemittel KW - Alkalisulfat KW - Fließmittel KW - Beschleuniger Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20131211-20861 SN - 978-3-00-044319-0 ER - TY - THES A1 - Häfner, Stefan T1 - Grid-based procedures for the mechanical analysis of heterogeneous solids N2 - The importance of modern simulation methods in the mechanical analysis of heterogeneous solids is presented in detail. Thereby the problem is noted that even for small bodies the required high-resolution analysis reaches the limits of today's computational power, in terms of memory demand as well as acceptable computational effort. A further problem is that frequently the accuracy of geometrical modelling of heterogeneous bodies is inadequate. The present work introduces a systematic combination and adaption of grid-based methods for achieving an essentially higher resolution in the numerical analysis of heterogeneous solids. Grid-based methods are as well primely suited for developing efficient and numerically stable algorithms for flexible geometrical modeling. A key aspect is the uniform data management for a grid, which can be utilized to reduce the effort and complexity of almost all concerned methods. A new finite element program, called Mulgrido, was just developed to realize this concept consistently and to test the proposed methods. Several disadvantages which generally result from grid discretizations are selectively corrected by modified methods. The present work is structured into a geometrical model, a mechanical model and a numerical model. The geometrical model includes digital image-based modeling and in particular several methods for the theory-based generation of inclusion-matrix models. Essential contributions refer to variable shape, size distribution, separation checks and placement procedures of inclusions. The mechanical model prepares the fundamentals of continuum mechanics, homogenization and damage modeling for the following numerical methods. The first topic of the numerical model introduces to a special version of B-spline finite elements. These finite elements are entirely variable in the order k of B-splines. For homogeneous bodies this means that the approximation quality can arbitrarily be scaled. In addition, the multiphase finite element concept in combination with transition zones along material interfaces yields a valuable solution for heterogeneous bodies. As the formulation is element-based, the storage of a global stiffness matrix is superseded such that the memory demand can essentially be reduced. This is possible in combination with iterative solver methods which represent the second topic of the numerical model. Here, the focus lies on multigrid methods where the number of required operations to solve a linear equation system only increases linearly with problem size. Moreover, for badly conditioned problems quite an essential improvement is achieved by preconditioning. The third part of the numerical model discusses certain aspects of damage simulation which are closely related to the proposed grid discretization. The strong efficiency of the linear analysis can be maintained for damage simulation. This is achieved by a damage-controlled sequentially linear iteration scheme. Finally a study on the effective material behavior of heterogeneous bodies is presented. Especially the influence of inclusion shapes is examined. By means of altogether more than one hundred thousand random geometrical arrangements, the effective material behavior is statistically analyzed and assessed. N2 - Die wichtige Bedeutung moderner Simulationsverfahren in der mechanischen Analyse heterogener Festkörper wird eingangs ausführlich dargestellt. Dabei wird als Problem festgestellt, dass die erforderliche hochauflösende Analyse bereits für relativ kleine Körper an die Grenzen heutiger Rechenleistung stößt, sowohl bezüglich Speicherbedarf als auch akzeptablen Rechenaufwands. Ein weiteres Problem stellt die häufig unzureichend genaue geometrische Modellierung der Zusammensetzung heterogener Körper dar. Die vorliegende Arbeit führt eine systematische Kombination und Anpassung von gitterbasierten Methoden ein, um dadurch eine wesentlich höhere Auflösung in der numerischen Analyse heterogener Körper zu erzielen. Gitterverfahren eignen sich ebenfalls ausgezeichnet, um effiziente und numerisch stabile Algorithmen zur flexiblen geometrischen Modellierung zu entwickeln. Ein Schlüsselaspekt stellt ein gleichmäßiges Datenmanagement für Gitter dar, welches dafür eingesetzt werden kann, um den Aufwand und die Komplexität von nahezu allen beteiligten Methoden zu reduzieren. Ein neues Finite-Elemente Programm, namens Mulgrido, wurde eigens dafür entwickelt, um das vorgeschlagene Konzept konsistent zu realisieren und zu untersuchen. Einige Nachteile, die sich klassischerweise aus Gitterdiskretisierungen ergeben, werden gezielt durch modifizierte Verfahren korrigiert. Die gegenwärtige Arbeit gliedert sich in ein geometrisches Modell, ein mechanisches Modell und ein numerisches Modell. Das geometrische Modell beinhaltet neben Methoden der digitalen Bildverarbeitung, insbesondere sämtliche Verfahren zur künstlichen Generierung von Einschluss-Matrix Geometrien. Wesentliche Beiträge werden bezüglich variabler Form, Größenverteilung, Überschneidungsabfragen und Platzierung von Einschlüssen geleistet. Das mechanische Modell bereitet durch Grundlagen der Kontinuumsmechanik, der Homogenisierung und der Schädigungsmodellierung auf eine numerische Umsetzung vor. Als erstes Thema des numerischen Modells wird eine besondere Umsetzung von B-Spline Finiten Elementen vorgestellt. Diese Finite Elemente können generisch für eine beliebige Ordnung k der B-Splines erzeugt werden. Für homogene Körper verfügen diese somit über beliebig skalierbare Approximationseigenschaften. Mittels des Konzepts mehrphasiger Finite Elemente in Kombination mit Übergangszonen entlang von Materialgrenzen gelingt eine hochwertige Erweiterung für heterogene Körper. Durch die Formulierung auf Elementebene, kann die Speicherung der globalen Steifigkeitsmatrix und somit wesentlicher Speicherplatz eingespart werden. Dies ist möglich in Kombination mit iterativen Lösungsverfahren, die das zweite Thema des numerischen Modells darstellen. Dabei liegt der Fokus auf Mehrgitterverfahren. Diese zeichnen sich dadurch aus, dass die Anzahl der erforderlichen Operationen um ein lineares Gleichungssystem zu lösen, nur linear mit der Problemgröße ansteigt. Durch Vorkonditionierung wird für schlecht konditionierte Probleme eine ganz wesentliche Verbesserung erreicht. Als drittes Thema des numerischen Modells werden Aspekte der Schädigungssimulation diskutiert, die in engem Zusammenhang mit der Gitterdiskretisierung stehen. Die hohe Effizienz der linearen Analyse kann durch ein schädigungskontrolliertes, schrittweise lineares Iterationsschema für die Schädigungsanalyse aufrecht erhalten werden. Abschließend wird eine Studie über das effektive Materialverhalten heterogener Körper vorgestellt. Insbesondere wird der Einfluss der Form von Einschlüssen untersucht. Mittels insgesamt weit über hunderttausend zufälliger geometrischer Anordnungen wird das effektive Materialverhalten statistisch analysiert und bewertet. T2 - Gitterbasierte Verfahren zur mechanischen Analyse heterogener Festkörper KW - B-Spline KW - Finite-Elemente-Methode KW - Mehrgitterverfahren KW - Homogenisieren KW - Schädigung KW - Festkörpermechanik KW - Numerische Mathematik KW - B-Spline Finite Elemente KW - Homogenisierung KW - mehrphasig KW - Lösungsverfahren KW - Modellierung KW - B-spline KW - finite element KW - multigrid KW - multiphase KW - effective properties Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20070830-9185 ER - TY - THES A1 - Brehm, Maik T1 - Vibration-based model updating: Reduction and quantification of uncertainties N2 - Numerical models and their combination with advanced solution strategies are standard tools for many engineering disciplines to design or redesign structures and to optimize designs with the purpose to improve specific requirements. As the successful application of numerical models depends on their suitability to represent the behavior related to the intended use, they should be validated by experimentally obtained results. If the discrepancy between numerically derived and experimentally obtained results is not acceptable, a model revision or a revision of the experiment need to be considered. Model revision is divided into two classes, the model updating and the basic revision of the numerical model. The presented thesis is related to a special branch of model updating, the vibration-based model updating. Vibration-based model updating is a tool to improve the correlation of the numerical model by adjusting uncertain model input parameters by means of results extracted from vibration tests. Evidently, uncertainties related to the experiment, the numerical model, or the applied numerical solving strategies can influence the correctness of the identified model input parameters. The reduction of uncertainties for two critical problems and the quantification of uncertainties related to the investigation of several nominally identical structures are the main emphases of this thesis. First, the reduction of uncertainties by optimizing reference sensor positions is considered. The presented approach relies on predicted power spectral amplitudes and an initial finite element model as a basis to define the assessment criterion for predefined sensor positions. In combination with geometry-based design variables, which represent the sensor positions, genetic and particle swarm optimization algorithms are applied. The applicability of the proposed approach is demonstrated on a numerical benchmark study of a simply supported beam and a case study of a real test specimen. Furthermore, the theory of determining the predicted power spectral amplitudes is validated with results from vibration tests. Second, the possibility to reduce uncertainties related to an inappropriate assignment for numerically derived and experimentally obtained modes is investigated. In the context of vibration-based model updating, the correct pairing is essential. The most common criterion for indicating corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases and is not reliable for automatic approaches. Hence, an alternative criterion, the energy-based modal assurance criterion, is proposed. This criterion combines the mathematical characteristic of orthogonality with the physical properties of the structure by modal strain energies. A numerical example and a case study with experimental data are presented to show the advantages of the proposed energy-based modal assurance criterion in comparison to the traditional modal assurance criterion. Third, the application of optimization strategies combined with information theory based objective functions is analyzed for the purpose of stochastic model updating. This approach serves as an alternative to the common sensitivity-based stochastic model updating strategies. Their success depends strongly on the defined initial model input parameters. In contrast, approaches based on optimization strategies can be more flexible. It can be demonstrated, that the investigated nature inspired optimization strategies in combination with Bhattacharyya distance and Kullback-Leibler divergence are appropriate. The obtained accuracies and the respective computational effort are comparable with sensitivity-based stochastic model updating strategies. The application of model updating procedures to improve the quality and suitability of a numerical model is always related to additional costs. The presented innovative approaches will contribute to reduce and quantify uncertainties within a vibration-based model updating process. Therefore, the increased benefit can compensate the additional effort, which is necessary to apply model updating procedures. N2 - Eine typische Anwendung von numerischen Modellen und den damit verbundenen numerischen Lösungsstrategien ist das Entwerfen oder Ertüchtigen von Strukturen und das Optimieren von Entwürfen zur Verbesserung spezifischer Eigenschaften. Der erfolgreiche Einsatz von numerischen Modellen ist abhängig von der Eignung des Modells bezüglich der vorgesehenen Anwendung. Deshalb ist eine Validierung mit experimentellen Ergebnissen sinnvoll. Zeigt die Validierung inakzeptable Unterschiede zwischen den Ergebnissen des numerischen Modells und des Experiments, sollte das numerische Modell oder das experimentelle Vorgehen verbessert werden. Für die Modellverbesserung gibt es zwei verschiedene Möglichkeiten, zum einen die Kalibrierung des Modells und zum anderen die grundsätzliche Änderung von Modellannahmen. Die vorliegende Dissertation befasst sich mit der Kalibrierung von numerischen Modellen auf der Grundlage von Schwingungsversuchen. Modellkalibrierung ist eine Methode zur Verbesserung der Korrelation zwischen einem numerischen Modell und einer realen Struktur durch Anpassung von Modelleingangsparametern unter Verwendung von experimentell ermittelten Daten. Unsicherheiten bezüglich des numerischen Modells, des Experiments und der angewandten numerischen Lösungsstrategie beeinflussen entscheidend die erzielbare Qualität der identifizierten Modelleingangsparameter. Die Schwerpunkte dieser Dissertation sind die Reduzierung von Unsicherheiten für zwei kritische Probleme und die Quantifizierung von Unsicherheiten extrahiert aus Experimenten nominal gleicher Strukturen. Der erste Schwerpunkt beschäftigt sich mit der Reduzierung von Unsicherheiten durch die Optimierung von Referenzsensorpositionen. Das Bewertungskriterium für vordefinierte Sensorpositionen basiert auf einer theoretischen Abschätzung von Amplituden der Spektraldichtefunktion und einem dazugehörigen Finite Elemente Modell. Die Bestimmung der optimalen Konfiguration erfolgt durch eine Anwendung von Optimierungsmethoden basierend auf genetischen Algorithmen und Schwarmintelligenzen. Die Anwendbarkeit dieser Methoden wurde anhand einer numerischen Studie an einem einfach gelagerten Balken und einem real existierenden komplexen Versuchskörper nachgewiesen. Mit Hilfe einer experimentellen Untersuchung wird die Abschätzung der statistischen Eigenschaften der Antwortspektraldichtefunktionen an diesem Versuchskörper validiert. Im zweiten Schwerpunkt konzentrieren sich die Untersuchungen auf die Reduzierung von Unsicherheiten, hervorgerufen durch ungeeignete Kriterien zur Eigenschwingformzuordnung. Diese Zuordnung ist entscheidend für Modellkalibrierungen basierend auf Schwingungsversuchen. Das am Häufigsten verwendete Kriterium zur Zuordnung ist das modal assurance criterion. In manchen Anwendungsfällen ist dieses Kriterium jedoch kein zuverlässiger Indikator. Das entwickelte alternative Kriterium, das energy-based modal assurance criterion, kombiniert das mathematische Merkmal der Orthogonalität mit den physikalischen Eigenschaften der untersuchten Struktur mit Hilfe von modalen Formänderungsarbeiten. Ein numerisches Beispiel und eine Sensitivitätsstudie mit experimentellen Daten zeigen die Vorteile des vorgeschlagenen energiebasierten Kriteriums im Vergleich zum traditionellen modal assurance criterion. Die Anwendung von Optimierungsstrategien auf stochastische Modellkalibrierungsverfahren wird im dritten Schwerpunkt analysiert. Dabei werden Verschiedenheitsmaße der Informationstheorie zur Definition von Zielfunktionen herangezogen. Dieser Ansatz stellt eine Alternative zu herkömmlichen Verfahren dar, welche auf gradientenbasierten Sensitivitätsmatrizen zwischen Eingangs- und Ausgangsgrößen beruhen. Deren erfolgreicher Einsatz ist abhängig von den Anfangswerten der Eingangsgrößen, wobei die vorgeschlagenen Optimierungsstrategien weniger störanfällig sind. Der Bhattacharyya Abstand und die Kullback-Leibler Divergenz als Zielfunktion, kombiniert mit stochastischen Optimierungsverfahren, erwiesen sich als geeignet. Bei vergleichbarem Rechenaufwand konnten ähnliche Genauigkeiten wie bei den Modellkalibrierungsverfahren, die auf Sensitivitätsmatrizen basieren, erzielt werden. Die Anwendung von Modellkalibrierungsverfahren zur Verbesserung der Eignung eines numerischen Modells für einen bestimmten Zweck ist mit einem Mehraufwand verbunden. Die präsentierten innovativen Verfahren tragen zu einer Reduzierung und Quantifizierung von Unsicherheiten innerhalb eines Modellkalibrierungsprozesses basierend auf Schwingungsversuchen bei. Mit dem zusätzlich generierten Nutzen kann der Mehraufwand, der für eine Modellkalibrierung notwendig ist, nachvollziehbar begründet werden. T2 - Modellkalibrierung basierend auf Schwingungsversuchen: Reduzierung und Quantifizierung von Unsicherheiten T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2011,1 KW - Dynamik KW - Optimierung KW - Modellkalibrierung KW - Modezuordung KW - optimale Sensorpositionierung KW - model updating KW - mode pairing KW - optimal sensor positions KW - dissimilarity measures KW - optimization Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20110926-15553 ER - TY - THES A1 - Schwedler, Michael T1 - Integrated structural analysis using isogeometric finite element methods N2 - The gradual digitization in the architecture, engineering, and construction industry over the past fifty years led to an extremely heterogeneous software environment, which today is embodied by the multitude of different digital tools and proprietary data formats used by the many specialists contributing to the design process in a construction project. Though these projects become increasingly complex, the demands on financial efficiency and the completion within a tight schedule grow at the same time. The digital collaboration of project partners has been identified as one key issue in successfully dealing with these challenges. Yet currently, the numerous software applications and their respective individual views on the design process severely impede that collaboration. An approach to establish a unified basis for the digital collaboration, regardless of the existing software heterogeneity, is a comprehensive digital building model contributed to by all projects partners. This type of data management known as building information modeling (BIM) has many benefits, yet its adoption is associated with many difficulties and thus, proceeds only slowly. One aspect in the field of conflicting requirements on such a digital model is the cooperation of architects and structural engineers. Traditionally, these two disciplines use different abstractions of reality for their models that in consequence lead to incompatible digital representations thereof. The onset of isogeometric analysis (IGA) promised to ease the discrepancy in design and analysis model representations. Yet, that initial focus quickly shifted towards using these methods as a more powerful basis for numerical simulations. Furthermore, the isogeometric representation alone is not capable of solving the model abstraction problem. It is thus the intention of this work to contribute to an improved digital collaboration of architects and engineers by exploring an integrated analysis approach on the basis of an unified digital model and solid geometry expressed by splines. In the course of this work, an analysis framework is developed that utilizes such models to automatically conduct numerical simulations commonly required in construction projects. In essence, this allows to retrieve structural analysis results from BIM models in a fast and simple manner, thereby facilitating rapid design iterations and profound design feedback. The BIM implementation Industry Foundation Classes (IFC) is reviewed with regard to its capabilities of representing the unified model. The current IFC schema strongly supports the use of redundant model data, a major pitfall in digital collaboration. Additionally, it does not allow to describe the geometry by volumetric splines. As the pursued approach builds upon a unique model for both, architectural and structural design, and furthermore requires solid geometry, necessary schema modifications are suggested. Structural entities are modeled by volumetric NURBS patches, each of which constitutes an individual subdomain that, with regard to the analysis, is incompatible with the remaining full model. The resulting consequences for numerical simulation are elaborated in this work. The individual subdomains have to be weakly coupled, for which the mortar method is used. Different approaches to discretize the interface traction fields are implemented and their respective impact on the analysis results is evaluated. All necessary coupling conditions are automatically derived from the related geometry model. The weak coupling procedure leads to a linear system of equations in saddle point form, which, owed to the volumetric modeling, is large in size and, the associated coefficient matrix has, due to the use of higher degree basis functions, a high bandwidth. The peculiarities of the system require adapted solution methods that generally cause higher numerical costs than the standard procedures for symmetric, positive-definite systems do. Different methods to solve the specific system are investigated and an efficient parallel algorithm is finally proposed. When the structural analysis model is derived from the unified model in the BIM data, it does in general initially not meet the requirements on the discretization that are necessary to obtain sufficiently accurate analysis results. The consequently necessary patch refinements must be controlled automatically to allowfor an entirely automatic analysis procedure. For that purpose, an empirical refinement scheme based on the geometrical and possibly mechanical properties of the specific entities is proposed. The level of refinement may be selectively manipulated by the structural engineer in charge. Furthermore, a Zienkiewicz-Zhu type error estimator is adapted for the use with isogeometric analysis results. It is shown that also this estimator can be used to steer an adaptive refinement procedure. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2016,2 KW - Finite-Elemente-Methode KW - NURBS KW - Isogeometrische Analyse KW - finite element method KW - isogeometric analysis KW - mortar method KW - building information modelling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170130-27372 ER - TY - THES A1 - Marx, Steffen T1 - Anwendung der mathematischen Optimierung bei der geometrisch und physikalisch nichtlinearen Analyse von Stahlbetontragwerken N2 - Ausgehend von den klassischen Variationsprinzipien der Mechanik werden kinematische und gemischte Extremalprinzipe abgeleitet, die zur Beschreibung geometrisch und physikalisch nichtlinearen Tragverhaltens geeignet sind. Ein Schwerpunkt der Arbeit besteht in der Anwendung der Prinzipe zur Analyse und Bemessung von Stahlbeton-, Spannbeton- und Verbundquerschnitten. Aus einem einheitlichen Berechnungsmodell wird eine Vielzahl praxisrelevanter Problemstellungen abgeleitet. Ein weiterer Schwerpunkt ist die Anwendung der kinematischen Extremalformulierung für die geometrisch und physikalisch nichtlineare Berechnung von Stabtragwerken. N2 - Based on the classical variational principles, kinematical and mixed extremum principles are derived. These principles are used to describe geometrical and physical nonlinear behaviour. A first focus is the application of the principles to analyse and design prestresst reinforced concrete and combined cross-sections. Based on an uniform calculation model a number of various practical problems is dealt. A second point is the use of kinematical extremum problem for geometrical and physical nonlinear calculation of framed structures. KW - Stahlbetonkonstruktion KW - Nichtlineare Mechanik KW - Nichtlineare Optimierung KW - Extremalprinzip KW - Tragverhalten KW - Querschnittsanalyse KW - Bemessung KW - Variationsprinzip KW - Grenzlast KW - Reinforced concrete KW - geometrical nonlinear KW - physical nonlinear KW - mathematical programming KW - cross-section analysis Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20040216-343 ER -