TY - THES A1 - Abeltshauser, Rainer T1 - Identification and separation of physical effects of coupled systems by using defined model abstractions N2 - The thesis investigates at the computer aided simulation process for operational vibration analysis of complex coupled systems. As part of the internal methods project “Absolute Values” of the BMW Group, the thesis deals with the analysis of the structural dynamic interactions and excitation interactions. The overarching aim of the methods project is to predict the operational vibrations of engines. Simulations are usually used to analyze technical aspects (e. g. operational vibrations, strength, ...) of single components in the industrial development. The boundary conditions of submodels are mostly based on experiences. So the interactions with neighboring components and systems are neglected. To get physically more realistic results but still efficient simulations, this work wants to support the engineer during the preprocessing phase by useful criteria. At first suitable abstraction levels based on the existing literature are defined to identify structural dynamic interactions and excitation interactions of coupled systems. So it is possible to separate different effects of the coupled subsystems. On this basis, criteria are derived to assess the influence of interactions between the considered systems. These criteria can be used during the preprocessing phase and help the engineer to build up efficient models with respect to the interactions with neighboring systems. The method was developed by using several models with different complexity levels. Furthermore, the method is proved for the application in the industrial environment by using the example of a current combustion engine. T2 - Identifikation und Separation physikalischer Effekte von gekoppelten Systemen mittels definierter Modellabstraktionen T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2017,1 KW - Strukturdynamik KW - Wechselwirkung KW - Schwingung KW - Berechnung KW - Numerische Berechnung KW - Modellbildung KW - Schwingungsanalyse KW - Simulationsprozess Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28600 ER - TY - THES A1 - Brehm, Maik T1 - Vibration-based model updating: Reduction and quantification of uncertainties N2 - Numerical models and their combination with advanced solution strategies are standard tools for many engineering disciplines to design or redesign structures and to optimize designs with the purpose to improve specific requirements. As the successful application of numerical models depends on their suitability to represent the behavior related to the intended use, they should be validated by experimentally obtained results. If the discrepancy between numerically derived and experimentally obtained results is not acceptable, a model revision or a revision of the experiment need to be considered. Model revision is divided into two classes, the model updating and the basic revision of the numerical model. The presented thesis is related to a special branch of model updating, the vibration-based model updating. Vibration-based model updating is a tool to improve the correlation of the numerical model by adjusting uncertain model input parameters by means of results extracted from vibration tests. Evidently, uncertainties related to the experiment, the numerical model, or the applied numerical solving strategies can influence the correctness of the identified model input parameters. The reduction of uncertainties for two critical problems and the quantification of uncertainties related to the investigation of several nominally identical structures are the main emphases of this thesis. First, the reduction of uncertainties by optimizing reference sensor positions is considered. The presented approach relies on predicted power spectral amplitudes and an initial finite element model as a basis to define the assessment criterion for predefined sensor positions. In combination with geometry-based design variables, which represent the sensor positions, genetic and particle swarm optimization algorithms are applied. The applicability of the proposed approach is demonstrated on a numerical benchmark study of a simply supported beam and a case study of a real test specimen. Furthermore, the theory of determining the predicted power spectral amplitudes is validated with results from vibration tests. Second, the possibility to reduce uncertainties related to an inappropriate assignment for numerically derived and experimentally obtained modes is investigated. In the context of vibration-based model updating, the correct pairing is essential. The most common criterion for indicating corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases and is not reliable for automatic approaches. Hence, an alternative criterion, the energy-based modal assurance criterion, is proposed. This criterion combines the mathematical characteristic of orthogonality with the physical properties of the structure by modal strain energies. A numerical example and a case study with experimental data are presented to show the advantages of the proposed energy-based modal assurance criterion in comparison to the traditional modal assurance criterion. Third, the application of optimization strategies combined with information theory based objective functions is analyzed for the purpose of stochastic model updating. This approach serves as an alternative to the common sensitivity-based stochastic model updating strategies. Their success depends strongly on the defined initial model input parameters. In contrast, approaches based on optimization strategies can be more flexible. It can be demonstrated, that the investigated nature inspired optimization strategies in combination with Bhattacharyya distance and Kullback-Leibler divergence are appropriate. The obtained accuracies and the respective computational effort are comparable with sensitivity-based stochastic model updating strategies. The application of model updating procedures to improve the quality and suitability of a numerical model is always related to additional costs. The presented innovative approaches will contribute to reduce and quantify uncertainties within a vibration-based model updating process. Therefore, the increased benefit can compensate the additional effort, which is necessary to apply model updating procedures. N2 - Eine typische Anwendung von numerischen Modellen und den damit verbundenen numerischen Lösungsstrategien ist das Entwerfen oder Ertüchtigen von Strukturen und das Optimieren von Entwürfen zur Verbesserung spezifischer Eigenschaften. Der erfolgreiche Einsatz von numerischen Modellen ist abhängig von der Eignung des Modells bezüglich der vorgesehenen Anwendung. Deshalb ist eine Validierung mit experimentellen Ergebnissen sinnvoll. Zeigt die Validierung inakzeptable Unterschiede zwischen den Ergebnissen des numerischen Modells und des Experiments, sollte das numerische Modell oder das experimentelle Vorgehen verbessert werden. Für die Modellverbesserung gibt es zwei verschiedene Möglichkeiten, zum einen die Kalibrierung des Modells und zum anderen die grundsätzliche Änderung von Modellannahmen. Die vorliegende Dissertation befasst sich mit der Kalibrierung von numerischen Modellen auf der Grundlage von Schwingungsversuchen. Modellkalibrierung ist eine Methode zur Verbesserung der Korrelation zwischen einem numerischen Modell und einer realen Struktur durch Anpassung von Modelleingangsparametern unter Verwendung von experimentell ermittelten Daten. Unsicherheiten bezüglich des numerischen Modells, des Experiments und der angewandten numerischen Lösungsstrategie beeinflussen entscheidend die erzielbare Qualität der identifizierten Modelleingangsparameter. Die Schwerpunkte dieser Dissertation sind die Reduzierung von Unsicherheiten für zwei kritische Probleme und die Quantifizierung von Unsicherheiten extrahiert aus Experimenten nominal gleicher Strukturen. Der erste Schwerpunkt beschäftigt sich mit der Reduzierung von Unsicherheiten durch die Optimierung von Referenzsensorpositionen. Das Bewertungskriterium für vordefinierte Sensorpositionen basiert auf einer theoretischen Abschätzung von Amplituden der Spektraldichtefunktion und einem dazugehörigen Finite Elemente Modell. Die Bestimmung der optimalen Konfiguration erfolgt durch eine Anwendung von Optimierungsmethoden basierend auf genetischen Algorithmen und Schwarmintelligenzen. Die Anwendbarkeit dieser Methoden wurde anhand einer numerischen Studie an einem einfach gelagerten Balken und einem real existierenden komplexen Versuchskörper nachgewiesen. Mit Hilfe einer experimentellen Untersuchung wird die Abschätzung der statistischen Eigenschaften der Antwortspektraldichtefunktionen an diesem Versuchskörper validiert. Im zweiten Schwerpunkt konzentrieren sich die Untersuchungen auf die Reduzierung von Unsicherheiten, hervorgerufen durch ungeeignete Kriterien zur Eigenschwingformzuordnung. Diese Zuordnung ist entscheidend für Modellkalibrierungen basierend auf Schwingungsversuchen. Das am Häufigsten verwendete Kriterium zur Zuordnung ist das modal assurance criterion. In manchen Anwendungsfällen ist dieses Kriterium jedoch kein zuverlässiger Indikator. Das entwickelte alternative Kriterium, das energy-based modal assurance criterion, kombiniert das mathematische Merkmal der Orthogonalität mit den physikalischen Eigenschaften der untersuchten Struktur mit Hilfe von modalen Formänderungsarbeiten. Ein numerisches Beispiel und eine Sensitivitätsstudie mit experimentellen Daten zeigen die Vorteile des vorgeschlagenen energiebasierten Kriteriums im Vergleich zum traditionellen modal assurance criterion. Die Anwendung von Optimierungsstrategien auf stochastische Modellkalibrierungsverfahren wird im dritten Schwerpunkt analysiert. Dabei werden Verschiedenheitsmaße der Informationstheorie zur Definition von Zielfunktionen herangezogen. Dieser Ansatz stellt eine Alternative zu herkömmlichen Verfahren dar, welche auf gradientenbasierten Sensitivitätsmatrizen zwischen Eingangs- und Ausgangsgrößen beruhen. Deren erfolgreicher Einsatz ist abhängig von den Anfangswerten der Eingangsgrößen, wobei die vorgeschlagenen Optimierungsstrategien weniger störanfällig sind. Der Bhattacharyya Abstand und die Kullback-Leibler Divergenz als Zielfunktion, kombiniert mit stochastischen Optimierungsverfahren, erwiesen sich als geeignet. Bei vergleichbarem Rechenaufwand konnten ähnliche Genauigkeiten wie bei den Modellkalibrierungsverfahren, die auf Sensitivitätsmatrizen basieren, erzielt werden. Die Anwendung von Modellkalibrierungsverfahren zur Verbesserung der Eignung eines numerischen Modells für einen bestimmten Zweck ist mit einem Mehraufwand verbunden. Die präsentierten innovativen Verfahren tragen zu einer Reduzierung und Quantifizierung von Unsicherheiten innerhalb eines Modellkalibrierungsprozesses basierend auf Schwingungsversuchen bei. Mit dem zusätzlich generierten Nutzen kann der Mehraufwand, der für eine Modellkalibrierung notwendig ist, nachvollziehbar begründet werden. T2 - Modellkalibrierung basierend auf Schwingungsversuchen: Reduzierung und Quantifizierung von Unsicherheiten T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2011,1 KW - Dynamik KW - Optimierung KW - Modellkalibrierung KW - Modezuordung KW - optimale Sensorpositionierung KW - model updating KW - mode pairing KW - optimal sensor positions KW - dissimilarity measures KW - optimization Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20110926-15553 ER - TY - THES A1 - Chan, Chiu Ling T1 - Smooth representation of thin shells and volume structures for isogeometric analysis N2 - The purpose of this study is to develop self-contained methods for obtaining smooth meshes which are compatible with isogeometric analysis (IGA). The study contains three main parts. We start by developing a better understanding of shapes and splines through the study of an image-related problem. Then we proceed towards obtaining smooth volumetric meshes of the given voxel-based images. Finally, we treat the smoothness issue on the multi-patch domains with C1 coupling. Following are the highlights of each part. First, we present a B-spline convolution method for boundary representation of voxel-based images. We adopt the filtering technique to compute the B-spline coefficients and gradients of the images effectively. We then implement the B-spline convolution for developing a non-rigid images registration method. The proposed method is in some sense of “isoparametric”, for which all the computation is done within the B-splines framework. Particularly, updating the images by using B-spline composition promote smooth transformation map between the images. We show the possible medical applications of our method by applying it for registration of brain images. Secondly, we develop a self-contained volumetric parametrization method based on the B-splines boundary representation. We aim to convert a given voxel-based data to a matching C1 representation with hierarchical cubic splines. The concept of the osculating circle is employed to enhance the geometric approximation, where it is done by a single template and linear transformations (scaling, translations, and rotations) without the need for solving an optimization problem. Moreover, we use the Laplacian smoothing and refinement techniques to avoid irregular meshes and to improve mesh quality. We show with several examples that the method is capable of handling complex 2D and 3D configurations. In particular, we parametrize the 3D Stanford bunny which contains irregular shapes and voids. Finally, we propose the B´ezier ordinates approach and splines approach for C1 coupling. In the first approach, the new basis functions are defined in terms of the B´ezier Bernstein polynomials. For the second approach, the new basis is defined as a linear combination of C0 basis functions. The methods are not limited to planar or bilinear mappings. They allow the modeling of solutions to fourth order partial differential equations (PDEs) on complex geometric domains, provided that the given patches are G1 continuous. Both methods have their advantages. In particular, the B´ezier approach offer more degree of freedoms, while the spline approach is more computationally efficient. In addition, we proposed partial degree elevation to overcome the C1-locking issue caused by the over constraining of the solution space. We demonstrate the potential of the resulting C1 basis functions for application in IGA which involve fourth order PDEs such as those appearing in Kirchhoff-Love shell models, Cahn-Hilliard phase field application, and biharmonic problems. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2020,2 KW - Modellierung KW - Isogeometrische Analyse KW - NURBS KW - Geometric Modeling KW - Isogeometric Analysis KW - NURBS Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200812-42083 ER - TY - THES A1 - Eckardt, Stefan T1 - Adaptive heterogeneous multiscale models for the nonlinear simulation of concrete N2 - The nonlinear behavior of concrete can be attributed to the propagation of microcracks within the heterogeneous internal material structure. In this thesis, a mesoscale model is developed which allows for the explicit simulation of these microcracks. Consequently, the actual physical phenomena causing the complex nonlinear macroscopic behavior of concrete can be represented using rather simple material formulations. On the mesoscale, the numerical model explicitly resolves the components of the internal material structure. For concrete, a three-phase model consisting of aggregates, mortar matrix and interfacial transition zone is proposed. Based on prescribed grading curves, an efficient algorithm for the generation of three-dimensional aggregate distributions using ellipsoids is presented. In the numerical model, tensile failure of the mortar matrix is described using a continuum damage approach. In order to reduce spurious mesh sensitivities, introduced by the softening behavior of the matrix material, nonlocal integral-type material formulations are applied. The propagation of cracks at the interface between aggregates and mortar matrix is represented in a discrete way using a cohesive crack approach. The iterative solution procedure is stabilized using a new path following constraint within the framework of load-displacement-constraint methods which allows for an efficient representation of snap-back phenomena. In several examples, the influence of the randomly generated heterogeneous material structure on the stochastic scatter of the results is analyzed. Furthermore, the ability of mesoscale models to represent size effects is investigated. Mesoscale simulations require the discretization of the internal material structure. Compared to simulations on the macroscale, the numerical effort and the memory demand increases dramatically. Due to the complexity of the numerical model, mesoscale simulations are, in general, limited to small specimens. In this thesis, an adaptive heterogeneous multiscale approach is presented which allows for the incorporation of mesoscale models within nonlinear simulations of concrete structures. In heterogeneous multiscale models, only critical regions, i.e. regions in which damage develops, are resolved on the mesoscale, whereas undamaged or sparsely damage regions are modeled on the macroscale. A crucial point in simulations with heterogeneous multiscale models is the coupling of sub-domains discretized on different length scales. The sub-domains differ not only in the size of the finite elements but also in the constitutive description. In this thesis, different methods for the coupling of non-matching discretizations - constraint equations, the mortar method and the arlequin method - are investigated and the application to heterogeneous multiscale models is presented. Another important point is the detection of critical regions. An adaptive solution procedure allowing the transfer of macroscale sub-domains to the mesoscale is proposed. In this context, several indicators which trigger the model adaptation are introduced. Finally, the application of the proposed adaptive heterogeneous multiscale approach in nonlinear simulations of concrete structures is presented. N2 - Das nichtlineare Materialverhalten von Beton ist durch die Entwicklung von Mikrorissen innerhalb der heterogenen Materialstruktur gekennzeichnet. In dieser Arbeit wird ein Mesoskalenmodell entwickelt, welches die einzelnen Bestandteile der Materialstruktur explizit auflöst und somit die Simulation dieser Mikrorisse erlaubt. Dadurch können die wirklichen physikalischen Vorgänge, welche das komplexe nichtlineare Verhalten von Beton verursachen, durch relativ einfache Materialformulierungen abgebildet werden. Für Beton wird auf der Mesoskala ein 3-Phasenmodell vorgeschlagen, bestehend aus groben Zuschlägen, Mörtelmatrix und Übergangszone zwischen Zuschlag und Matrix. In diesem Zusammenhang wird ein effizienter Algorithmus vorgestellt, welcher ausgehend von einer gegebenen Sieblinie dreidimensionale Kornstrukturen mittels Ellipsoiden simuliert. Im Mesoskalenmodell wird das Zugversagen der Mörtelmatrix durch einen Kontinuumsansatz beschrieben. Um Netzabhängigkeiten, welche durch das Entfestigungsverhalten des Materials hervorgerufen werden, zu reduzieren, kommen nichtlokale Materialformulierungen zum Einsatz. Risse innerhalb der Übergangszone zwischen Zuschlag und Matrix werden, basierend auf einem kohäsiven Modell, mittels eines diskreten Rissansatzes abgebildet. Die Verwendung einer neuen Nebenbedingung innerhalb der Last-Verschiebungs-Zwangsmethode führt zu einer Stabilisierung des iterativen Lösungverfahrens, so dass eine effiziente Simulation von Snap-back Phänomenen möglich wird. Anhand von Beispielen wird gezeigt, dass Mesoskalenmodelle die stochastische Streuung von Ergebnissen und Maßstabseffekte abbilden können. Da auf der Mesoskala die Diskretisierung der inneren Materialstruktur erforderlich ist, steigt im Vergleich zu Simulationen auf der Makroskala der numerische Aufwand erheblich. Aufgrund der Komplexität des numerischen Modells sind Mesoskalensimulationen in der Regel auf kleine Probekörper beschränkt. In dieser Arbeit wird ein adaptiver heterogener Mehrskalenansatz vorgestellt, welcher die Verwendung von Mesoskalenmodellen in nichtlinearen Simulationen von Betonstrukturen erlaubt. In heterogenen Mehrskalenmodellen werden nur kritische Bereiche auf der Mesoskala aufgelöst, während ungeschädigte Bereiche auf der Makroskala abgebildet werden. Ein wichtiger Aspekt in Simulationen mit heterogenen Mehrskalenmodellen ist die Kopplung der auf unterschiedlichen Längenskalen diskretisierten Teilgebiete. Diese unterscheiden sich nicht nur in der Größe der finiten Elemente sondern auch in der Beschreibung des Materials. Verschiedene Methoden zur Kopplung nicht übereinstimmender Vernetzungen - Kopplungsgleichungen, die Mortar-Methode und die Arlequin-Methode - werden untersucht und ihre Anwendung in heterogenen Mehrskalenmodellen wird gezeigt. Ein weiterer wichtiger Aspekt ist die Bestimmung kritischer Regionen. Eine adaptive Lösungsstrategie wird entwickelt, welche die Umwandlung von Makroskalengebieten auf die Mesoskala erlaubt. In diesem Zusammenhang werden Indikatoren vorgestellt, die eine Modellanpassung auslösen. Anhand nichtlinearer Simulationen von Betonstrukturen wird die Anwendung des vorgestellten adaptiven heterogenen Mehrskalenansatzes demonstriert. T2 - Adaptive heterogene Mehrskalenmodelle zur nichtlinearen Simulation von Beton T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2010,1 KW - Beton KW - Mehrskalenanalyse KW - Finite-Elemente-Methode KW - Nichtlineare Finite-Elemente-Methode KW - Schadensmechanik KW - Mehrskalenmodell KW - Adaptives Verfahren KW - concrete KW - multiscale method KW - finite element method KW - continuum damage mechanics KW - adaptive simulation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20100317-15023 ER - TY - THES A1 - Higuchi, Shoko T1 - Cost-Benefit Based Maintenance Optimization for Deteriorating Structures N2 - In recent years increasingly consideration has been given to the lifetime extension of existing structures. This is based on the fact that a growing percentage of civil infrastructure as well as buildings is threatened by obsolescence and that due to simple monetary reasons this can no longer be countered by simply re-building everything anew. Hence maintenance interventions are required which allow partial or complete structural rehabilitation. However, maintenance interventions have to be economically reasonable, that is, maintenance expenditures have to be outweighed by expected future benefits. Is this not the case, then indeed the structure is obsolete - at least in its current functional, economic, technical, or social configuration - and innovative alternatives have to be evaluated. An optimization formulation for planning maintenance interventions based on cost-benefit criteria is proposed herein. The underlying formulation is as follows: (a) between maintenance interventions structural deterioration is described as a random process; (b) maintenance interventions can take place anytime throughout lifetime and comprise the rehabilitation of all deterioration states above a certain minimum level; and (c) maintenance interventions are optimized by taking into account all expected life-cycle costs (construction, failure, inspection and state-dependent repair costs) as well as state- or time-dependent benefit rates. The optimization is performed by an evolutionary algorithm. The proposed approach also allows to determine optimal lifetimes and acceptable failure rates. Numerical examples demonstrate the importance of defining benefit rates explicitly. It is shown, that the optimal solution to maintenance interventions requires to take action before reaching the acceptable failure rate or the zero expected net benefit rate level. Deferring decisions with respect to maintenance not only results, in general, in higher losses, but also results in overly hazardous structures. N2 - Die Verlängerung der Nutzungsdauer bestehender Tragwerke hat in den letzten Jahren zunehmend an Bedeutung gewonnen. Dies liegt in der Tatsache begründet, dass ein nicht unerheblicher Anteil der Infrastruktur wie auch an Gebäuden durch Überalterung bedroht ist, und dass es aus rein wirtschaftlichen Gründen nicht länger möglich ist diesen Zustand durch Neubau zu entgegnen. Es sind also Instandhaltungsstrategien notwendig, die eine teilweise oder vollständige Revitalisierung von Tragwerken erlauben. Allerdings müssen diese Instandhaltungsstrategien auch einen volkswirtschaftlichen Sinn haben, das heißt die entsprechenden Aufwendungen müssen durch einen zukünftig zu erwartenden Nutzen aufgewogen werden. Ist dies nicht der Fall, so sind die Tragwerke in der Tat veraltet - zumindest in ihrer momentanen funktionellen, wirtschaftlichen, technischen oder gesellschaftlichen Bedeutung - und Alternativvorschläge müssen untersucht werden. In dieser Arbeit wird die Planung von Instandhaltungsmaßnahmen als Optimierungsaufgabe unter Verwendung von Kosten-Nutzen-Kriterien formuliert. Die zugrunde liegende Beschreibung ist wie folgt: (a) die Abnahme der Tragfähigkeit zwischen den Instandhaltungsmaßnahmen wird als Zufallsprozess beschrieben; (b) die Instandhaltungsmaßnahmen können jederzeit während der Nutzungsdauer stattfinden und bestehen in der Reparatur von Schadenszuständen eines gewissen Niveaus; (c) die Instandhaltungsmaßnahmen werden hinsichtlich aller Lebensdauerkosten (Errichtungs-, Versagens-, Inspektions- und schadensabhängiger Reparaturkosten) sowie des zustands- und zeitabhängigen Nutzens optimiert. Die Optimierung erfolgt mit Hilfe eines evolutionären Algorithmus. Die vorgeschlagene Formulierung erlaubt darüber hinaus auch die Bestimmung von optimalen Nutzungsdauern und zulässigen Versagensraten. Die Rechenbeispiele weisen die Bedeutung einer expliziten Ausweisung des Nutzens aus. Es wird gezeigt, dass eine optimale Strategie für Instandhaltungsmaßnahmen ein aktiv werden vor Erreichen zulässiger Versagensraten oder dem Verschwinden des Nettonutzens je Zeiteinheit erfordert. Das Aufschieben von Entscheidungen bezüglich der Durchführung von Instandhaltungsmaßnahmen zieht in der Regel nicht nur höhere Folgekosten nach sich, sondern resultiert auch in Tragwerke mit unzulässig hohem Gefährdungspotential. T2 - Kosten-Nutzen orientierte Optimierung von Instandhaltungsmaßnahmen für alternde Tragwerke KW - Kosten-Nutzen-Analyse KW - Zuverlässigkeitstheorie KW - Optimierung KW - Instandhaltung KW - Markov-Kette mit stetiger Zeit KW - Cost-Benefit Analysis KW - Reliability Theory KW - Optimization KW - Rehabilitation KW - Continuous-Time Markov Chain Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20080513-13616 ER - TY - THES A1 - Häfner, Stefan T1 - Grid-based procedures for the mechanical analysis of heterogeneous solids N2 - The importance of modern simulation methods in the mechanical analysis of heterogeneous solids is presented in detail. Thereby the problem is noted that even for small bodies the required high-resolution analysis reaches the limits of today's computational power, in terms of memory demand as well as acceptable computational effort. A further problem is that frequently the accuracy of geometrical modelling of heterogeneous bodies is inadequate. The present work introduces a systematic combination and adaption of grid-based methods for achieving an essentially higher resolution in the numerical analysis of heterogeneous solids. Grid-based methods are as well primely suited for developing efficient and numerically stable algorithms for flexible geometrical modeling. A key aspect is the uniform data management for a grid, which can be utilized to reduce the effort and complexity of almost all concerned methods. A new finite element program, called Mulgrido, was just developed to realize this concept consistently and to test the proposed methods. Several disadvantages which generally result from grid discretizations are selectively corrected by modified methods. The present work is structured into a geometrical model, a mechanical model and a numerical model. The geometrical model includes digital image-based modeling and in particular several methods for the theory-based generation of inclusion-matrix models. Essential contributions refer to variable shape, size distribution, separation checks and placement procedures of inclusions. The mechanical model prepares the fundamentals of continuum mechanics, homogenization and damage modeling for the following numerical methods. The first topic of the numerical model introduces to a special version of B-spline finite elements. These finite elements are entirely variable in the order k of B-splines. For homogeneous bodies this means that the approximation quality can arbitrarily be scaled. In addition, the multiphase finite element concept in combination with transition zones along material interfaces yields a valuable solution for heterogeneous bodies. As the formulation is element-based, the storage of a global stiffness matrix is superseded such that the memory demand can essentially be reduced. This is possible in combination with iterative solver methods which represent the second topic of the numerical model. Here, the focus lies on multigrid methods where the number of required operations to solve a linear equation system only increases linearly with problem size. Moreover, for badly conditioned problems quite an essential improvement is achieved by preconditioning. The third part of the numerical model discusses certain aspects of damage simulation which are closely related to the proposed grid discretization. The strong efficiency of the linear analysis can be maintained for damage simulation. This is achieved by a damage-controlled sequentially linear iteration scheme. Finally a study on the effective material behavior of heterogeneous bodies is presented. Especially the influence of inclusion shapes is examined. By means of altogether more than one hundred thousand random geometrical arrangements, the effective material behavior is statistically analyzed and assessed. N2 - Die wichtige Bedeutung moderner Simulationsverfahren in der mechanischen Analyse heterogener Festkörper wird eingangs ausführlich dargestellt. Dabei wird als Problem festgestellt, dass die erforderliche hochauflösende Analyse bereits für relativ kleine Körper an die Grenzen heutiger Rechenleistung stößt, sowohl bezüglich Speicherbedarf als auch akzeptablen Rechenaufwands. Ein weiteres Problem stellt die häufig unzureichend genaue geometrische Modellierung der Zusammensetzung heterogener Körper dar. Die vorliegende Arbeit führt eine systematische Kombination und Anpassung von gitterbasierten Methoden ein, um dadurch eine wesentlich höhere Auflösung in der numerischen Analyse heterogener Körper zu erzielen. Gitterverfahren eignen sich ebenfalls ausgezeichnet, um effiziente und numerisch stabile Algorithmen zur flexiblen geometrischen Modellierung zu entwickeln. Ein Schlüsselaspekt stellt ein gleichmäßiges Datenmanagement für Gitter dar, welches dafür eingesetzt werden kann, um den Aufwand und die Komplexität von nahezu allen beteiligten Methoden zu reduzieren. Ein neues Finite-Elemente Programm, namens Mulgrido, wurde eigens dafür entwickelt, um das vorgeschlagene Konzept konsistent zu realisieren und zu untersuchen. Einige Nachteile, die sich klassischerweise aus Gitterdiskretisierungen ergeben, werden gezielt durch modifizierte Verfahren korrigiert. Die gegenwärtige Arbeit gliedert sich in ein geometrisches Modell, ein mechanisches Modell und ein numerisches Modell. Das geometrische Modell beinhaltet neben Methoden der digitalen Bildverarbeitung, insbesondere sämtliche Verfahren zur künstlichen Generierung von Einschluss-Matrix Geometrien. Wesentliche Beiträge werden bezüglich variabler Form, Größenverteilung, Überschneidungsabfragen und Platzierung von Einschlüssen geleistet. Das mechanische Modell bereitet durch Grundlagen der Kontinuumsmechanik, der Homogenisierung und der Schädigungsmodellierung auf eine numerische Umsetzung vor. Als erstes Thema des numerischen Modells wird eine besondere Umsetzung von B-Spline Finiten Elementen vorgestellt. Diese Finite Elemente können generisch für eine beliebige Ordnung k der B-Splines erzeugt werden. Für homogene Körper verfügen diese somit über beliebig skalierbare Approximationseigenschaften. Mittels des Konzepts mehrphasiger Finite Elemente in Kombination mit Übergangszonen entlang von Materialgrenzen gelingt eine hochwertige Erweiterung für heterogene Körper. Durch die Formulierung auf Elementebene, kann die Speicherung der globalen Steifigkeitsmatrix und somit wesentlicher Speicherplatz eingespart werden. Dies ist möglich in Kombination mit iterativen Lösungsverfahren, die das zweite Thema des numerischen Modells darstellen. Dabei liegt der Fokus auf Mehrgitterverfahren. Diese zeichnen sich dadurch aus, dass die Anzahl der erforderlichen Operationen um ein lineares Gleichungssystem zu lösen, nur linear mit der Problemgröße ansteigt. Durch Vorkonditionierung wird für schlecht konditionierte Probleme eine ganz wesentliche Verbesserung erreicht. Als drittes Thema des numerischen Modells werden Aspekte der Schädigungssimulation diskutiert, die in engem Zusammenhang mit der Gitterdiskretisierung stehen. Die hohe Effizienz der linearen Analyse kann durch ein schädigungskontrolliertes, schrittweise lineares Iterationsschema für die Schädigungsanalyse aufrecht erhalten werden. Abschließend wird eine Studie über das effektive Materialverhalten heterogener Körper vorgestellt. Insbesondere wird der Einfluss der Form von Einschlüssen untersucht. Mittels insgesamt weit über hunderttausend zufälliger geometrischer Anordnungen wird das effektive Materialverhalten statistisch analysiert und bewertet. T2 - Gitterbasierte Verfahren zur mechanischen Analyse heterogener Festkörper KW - B-Spline KW - Finite-Elemente-Methode KW - Mehrgitterverfahren KW - Homogenisieren KW - Schädigung KW - Festkörpermechanik KW - Numerische Mathematik KW - B-Spline Finite Elemente KW - Homogenisierung KW - mehrphasig KW - Lösungsverfahren KW - Modellierung KW - B-spline KW - finite element KW - multigrid KW - multiphase KW - effective properties Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20070830-9185 ER - TY - THES A1 - Luther, Torsten T1 - Adaptation of atomistic and continuum methods for multiscale simulation of quasi-brittle intergranular damage N2 - The numerical simulation of damage using phenomenological models on the macroscale was state of the art for many decades. However, such models are not able to capture the complex nature of damage, which simultaneously proceeds on multiple length scales. Furthermore, these phenomenological models usually contain damage parameters, which are physically not interpretable. Consequently, a reasonable experimental determination of these parameters is often impossible. In the last twenty years, the ongoing advance in computational capacities provided new opportunities for more and more detailed studies of the microstructural damage behavior. Today, multiphase models with several million degrees of freedom enable for the numerical simulation of micro-damage phenomena in naturally heterogeneous materials. Therewith, the application of multiscale concepts for the numerical investigation of the complex nature of damage can be realized. The presented thesis contributes to a hierarchical multiscale strategy for the simulation of brittle intergranular damage in polycrystalline materials, for example aluminum. The numerical investigation of physical damage phenomena on an atomistic microscale and the integration of these physically based information into damage models on the continuum meso- and macroscale is intended. Therefore, numerical methods for the damage analysis on the micro- and mesoscale including the scale transfer are presented and the transition to the macroscale is discussed. The investigation of brittle intergranular damage on the microscale is realized by the application of the nonlocal Quasicontinuum method, which fully describes the material behavior by atomistic potential functions, but reduces the number of atomic degrees of freedom by introducing kinematic couplings. Since this promising method is applied only by a limited group of researchers for special problems, necessary improvements have been realized in an own parallelized implementation of the 3D nonlocal Quasicontinuum method. The aim of this implementation was to develop and combine robust and efficient algorithms for a general use of the Quasicontinuum method, and therewith to allow for the atomistic damage analysis in arbitrary grain boundary configurations. The implementation is applied in analyses of brittle intergranular damage in ideal and nonideal grain boundary models of FCC aluminum, considering arbitrary misorientations. From the microscale simulations traction separation laws are derived, which describe grain boundary decohesion on the mesoscale. Traction separation laws are part of cohesive zone models to simulate the brittle interface decohesion in heterogeneous polycrystal structures. 2D and 3D mesoscale models are presented, which are able to reproduce crack initiation and propagation along cohesive interfaces in polycrystals. An improved Voronoi algorithm is developed in 2D to generate polycrystal material structures based on arbitrary distribution functions of grain size. The new model is more flexible in representing realistic grain size distributions. Further improvements of the 2D model are realized by the implementation and application of an orthotropic material model with Hill plasticity criterion to grains. The 2D and 3D polycrystal models are applied to analyze crack initiation and propagation in statically loaded samples of aluminum on the mesoscale without the necessity of initial damage definition. N2 - Strukturmechanische Ermüdungs- und Lebensdaueranalysen basieren meist auf der Anwendung phänomenologischer Modelle der Schädigungs- und Bruchmechanik zur numerischen Simulationen des makroskopischen Schädigungsverhaltens. Ausgehend von einer definierten Anfangsschädigung sind diese Modelle nicht in der Lage, die tatsächlichen Vorgänge der Rissinitiierung und unterschiedlichen Rissausbreitung zu erfassen. Eine physikalische Interpretation der phänomenologisch eingeführten Schädigungsparameter ist oftmals nicht möglich und deren experimentelle Bestimmung schwierig. Die Berücksichtigung des mikrostrukturellen Aufbaus von Materialien in numerischen Modellen der Schädigungs- und Bruchmechanik bietet neue Möglichkeiten, die für die Rissinitiierung und Rissausbreitung ursächlichen physikalischen Phänomene abzubilden. Zunehmende Erkenntnisse über gleichzeitig auftretende Mikro- und Makroschädigungsvorgänge resultieren in verbesserten numerischen Modellen, mit denen aufwändige und kostenintensive Experimente in der Materialentwicklung zum Teil ersetzt werden können. In Kenntnis einer Vielfalt von unterschiedlichen Schädigungsphänomenen in technischen Materialien fokussiert die vorliegende Dissertation auf die Entwicklung und Verbesserung numerischer Methoden der Atomistik und der Kontinuumsmechanik zur Mehrskalenuntersuchung quasi-spröder Korngrenzenschädigung in polykristallinen Werkstoffen, z.B. Aluminium. Die kombinierte Anwendung dieser Methoden ist Teil eines hierarchischen Mehrskalenansatzes zur Integration des physikalisch beschriebenen Materialverhaltens der Atomistik in ein ingenieurmäßiges Kontinuumsschädigungsmodell. Ziel der Dissertation ist die Entwicklung einer Methodik, die es erlaubt, den Verlust atomarer Bindungen als physikalische Ursache spröder Schädigung zu simulieren und Ergebnisse aus diesen atomistischen Mikroskalen-Simulationen zur Parametrisierung von kohäsiven Materialmodellen der Kontinuumsmechanik zu nutzen. Diese beschreiben den intergranularen Sprödbruch in heterogenen Polykristallmodellen der Mesoskala. Der Einfluss der Heterogenität wird in nichtlinearen Finite-Elemente-Simulationen durch explizite Abbildung der Kornstruktur im mesoskopischen Polykristallmodell berücksichtigt. Durch den Einsatz des kohäsiven Interface-Gesetzes erlaubt das auf der Mesoskala angewandte Kontinuumsmodell die Simulation spröder Korngrenzenschädigung in statisch belasteten 2D und 3D Modellen ohne die Notwendigkeit der Definition einer Anfangsschädigung, wie dies in klassischen Modellen der linear-elastischen Bruchmechanik notwendig ist. Zur effizienten Realisierung der atomistischen Mikroskalen-Simulationen wird eine Implementation der nichtlokalen 3D Quasikontinuumsmethode angewandt. Diese Methode basiert auf einem atomistischen Ansatz und beschreibt das Materialverhalten auf Grundlage atomarer Bindungskräfte. In Modellgebieten mit gleichmäßigem Verformungsfeld werden kinematische Kopplungen atomarer Freiheitsgrade eingeführt, sodass sich die Zahl unabhängiger Freiheitsgrade stark reduziert. Deren effizienter Einsatz erlaubt Simulationen an größeren Modellen ohne Kopplung mit kontinuumsmechanischen Methoden. Eine verbesserte Vernetzung, ein robuster Optimierungsalgorithmus und die vorgenommene Parallelisierung machen die implementierte nichtlokale 3D Quasikontinuumsmethode zu einem effizienten Werkzeug für die robuste Simulation von physikalischen Schädigungsphänomenen in beliebigen atomistischen Konfigurationen. In quasistatischen Simulationen wird eine deutliche Beschleunigung gegenüber der Methode der Gitterstatik bei vergleichbarer Qualität der Ergebnisse erreicht. T2 - Weiterentwicklung numerischer Methoden der Atomistik und Kontinuumsmechanik zur Multiskalen-Simulation quasi-spröder intergranularer Schädigung T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2010,2 KW - Mechanik KW - Computersimulation KW - Mikro-Scale KW - Meso-Scale KW - Polykristall KW - intergranular damage KW - atomistic simulation methods KW - continuum mechanics KW - quasicontinuum method KW - scale transition Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20101101-15245 ER - TY - THES A1 - Msekh, Mohammed Abdulrazzak T1 - Phase Field Modeling for Fracture with Applications to Homogeneous and Heterogeneous Materials N2 - The thesis presents an implementation including different applications of a variational-based approach for gradient type standard dissipative solids. Phase field model for brittle fracture is an application of the variational-based framework for gradient type solids. This model allows the prediction of different crack topologies and states. Of significant concern is the application of theoretical and numerical formulation of the phase field modeling into the commercial finite element software Abaqus in 2D and 3D. The fully coupled incremental variational formulation of phase field method is implemented by using the UEL and UMAT subroutines of Abaqus. The phase field method considerably reduces the implementation complexity of fracture problems as it removes the need for numerical tracking of discontinuities in the displacement field that are characteristic of discrete crack methods. This is accomplished by replacing the sharp discontinuities with a scalar damage phase field representing the diffuse crack topology wherein the amount of diffusion is controlled by a regularization parameter. The nonlinear coupled system consisting of the linear momentum equation and a diffusion type equation governing the phase field evolution is solved simultaneously via a Newton- Raphson approach. Post-processing of simulation results to be used as visualization module is performed via an additional UMAT subroutine implemented in the standard Abaqus viewer. In the same context, we propose a simple yet effective algorithm to initiate and propagate cracks in 2D geometries which is independent of both particular constitutive laws and specific element technology and dimension. It consists of a localization limiter in the form of the screened Poisson equation with, optionally, local mesh refinement. A staggered scheme for standard equilibrium and screened Cauchy equations is used. The remeshing part of the algorithm consists of a sequence of mesh subdivision and element erosion steps. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). Mesh smoothing makes use of edge contraction as function of a given constitutive quantity such as the principal stress or void fraction. To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests. Furthermore, we introduce a computational approach regarding mechanical loading in microscale on an inelastically deforming composite material. The nanocomposites material of fully exfoliated clay/epoxy is shaped to predict macroscopic elastic and fracture related material parameters based on their fine–scale features. Two different configurations of polymer nanocomposites material (PNCs) have been studied. These configurations are fully bonded PNCs and PNCs with an interphase zone formation between the matrix and the clay reinforcement. The representative volume element of PNCs specimens with different clay weight contents, different aspect ratios, and different interphase zone thicknesses are generated by adopting Python scripting. Different constitutive models are employed for the matrix, the clay platelets, and the interphase zones. The brittle fracture behavior of the epoxy matrix and the interphase zones material are modeled using the phase field approach, whereas the stiff silicate clay platelets of the composite are designated as a linear elastic material. The comprehensive study investigates the elastic and fracture behavior of PNCs composites, in addition to predict Young’s modulus, tensile strength, fracture toughness, surface energy dissipation, and cracks surface area in the composite for different material parameters, geometry, and interphase zones properties and thicknesses. T2 - Phasenfeldmodellierung für Brüche mit Anwendungen auf homogene und heterogene Materialien KW - Finite-Elemente-Methode KW - Phase field model KW - Fracture KW - Abaqus KW - Finite Element Model Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170615-32291 ER - TY - THES A1 - Nickerson, Seth T1 - Thermo-Mechanical Behavior of Honeycomb, Porous, Microcracked Ceramics BT - Characterization and analysis of thermally induced stresses with specific consideration of synthetic, porous cordierite honeycomb substrates N2 - The underlying goal of this work is to reduce the uncertainty related to thermally induced stress prediction. This is accomplished by considering use of non-linear material behavior, notably path dependent thermal hysteresis behavior in the elastic properties. Primary novel factors of this work center on two aspects. 1. Broad material characterization and mechanistic material understanding, giving insight into why this class of material behaves in characteristic manners. 2. Development and implementation of a thermal hysteresis material model and its use to determine impact on overall macroscopic stress predictions. Results highlight microcracking evolution and behavior as the dominant mechanism for material property complexity in this class of materials. Additionally, it was found that for the cases studied, thermal hysteresis behavior impacts relevant peak stress predictions of a heavy-duty diesel particulate filter undergoing a drop-to-idle regeneration by less than ~15% for all conditions tested. It is also found that path independent heating curves may be utilized for a linear solution assumption to simplify analysis. This work brings forth a newly conceived concept of a 3 state, 4 path, thermally induced microcrack evolution process; demonstrates experimental behavior that is consistent with the proposed mechanisms, develops a mathematical framework that describes the process and quantifies the impact in a real world application space. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2019,4 KW - Keramik KW - ceramics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190911-39753 ER - TY - GEN A1 - Nikulla, Susanne T1 - Untersuchung des dynamischen Verhaltens von Eisenbahnbrücken bei wechselnden Umweltbedingungen N2 - Im Zuge des Ausbaus von Eisenbahnstrecken für den Hochgeschwindigkeitsverkehr muss sichergestellt werden, dass keine Resonanz zwischen den periodisch einwirkenden Radlasten und den Brückeneigenfrequenzen entsteht. Bei der Untersuchung einzelner Bauwerke wurden teilweise recht große Schwankungen des dynamischen Verhaltens im Verlauf der Jahreszeiten festgestellt. Um diese Beobachtungen zu präzisieren, wurden an zwei ausgewählten Walzträger-in-Beton-Brücken über den Zeitraum von 15 Monaten Beschleunigungsmessungen durchgeführt. Die gewonnenen Daten wurden mit der Stochastic Subspace Methode, die im ersten Teil der Arbeit näher erläutert wird, ausgewertet. Es konnte für alle Eigenmoden ein Absinken der Eigenfrequenz bei steigender Temperatur beobachtet werden. Um die Ursachen hierfür genauer zu untersuchen, wurde für eine der beiden Brücken ein Finite-Elemente-Modell mit dem Programm SLang erstellt. Mittels einer Sensitivitätsanalyse wurden die für das Schwingverhalten maßgebenden Systemeigenschaften identifiziert. Die anschließend durchgeführte Strukturoptimierung unter Nutzung des genetischen Algorithmus sowie des adaptiven Antwortflächenverfahrens konnte die Temperaturabhängigkeit einzelner Materialparameter aufzeigen, die zumindest eine Ursache für Schwankungen der Eigenfrequenzen darstellen. KW - Dynamik KW - Systemidentifikation KW - Beschleunigungsmessung KW - Strukturoptimierung KW - Modalanalyse KW - Lufttemperatur KW - Zustandsraummodell KW - Stochastic Subspace Identification Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20081020-14324 ER -