TY - THES A1 - Rothe, Christian T1 - Untersuchung diffuser kohärenter Schallfelder in Atrien N2 - In dieser Diplomarbeit werden – anhand eines Simulationsprogrammes – die diffusen Schallfelder in Atrien untersucht. Diesbezüglich standen Referenzobjekte in Berlin zur Verfügung. Es wurde untersucht, inwieweit sich die Raumgeometrie, die Volumina und die Absorptionseigenschaften der Umhüllungsflächen auf die Energieverteilung im Atriumsraum auswirken. Ziel der Arbeit ist es, Optimierungspotenziale aufzuzeigen und Lösungsvorschläge zu entwickeln, die zeigen, mit welchen Mitteln und Methoden die Raumakustik nachträglich verbessert werden kann. KW - Absorption KW - Absorptionskoeffizient KW - Raumakustik KW - Absorber KW - Absorberelement KW - Nachhall KW - Nachhallzeit KW - Klarheitsmaß KW - Deutlichkeit KW - Raumeindruck KW - Lautstärke KW - Diffusität Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-6786 N1 - Der Volltext-Zugang wurde im Zusammenhang mit der Klärung urheberrechtlicher Fragen mit sofortiger Wirkung gesperrt. ER - TY - THES A1 - Kuhne, Michael T1 - Modellierung des Energietransports durch Verglasungen T1 - Modelling of the transport of energy through thermal glazings N2 - Es werden sowohl analytische als auch numerische Verfahren zur Berechnung der Wärmeverluste von Verglasungen vorgestellt, wobei alle am Energietransport beteiligten Prozesse, die Wärmeleitung, die thermisch getriebenen Konvektionsströmungen und die infrarote Strahlungswechselwirkung, korrekt und vollständig berücksichtigt werden. Mit Hilfe numerischer Strömungssimulation werden Verglasungen systematisch hinsichtlich der Füllgasart, der Infrarotverspiegelung, der Einbaulage und des Scheibenabstandes sowie der Anzahl der Gaszwischenräume (Zwei-, Drei- und Vierscheiben-Verglasung) untersucht und verglichen. Die Abhängigkeit des k-Wertes von den Temperaturen der angrenzenden Klimate (Atmosphäre und Innenraum) wird dargestellt. N2 - The aim of this work is to calculate the heat losses of thermal glazings. Conduction, radiation and convection are described in detail. Both analytical and numerical approaches are presented. Using a program for Computational Fluid Dynamics (CFD) thermal glazings are investigated systematically. The influence of IR-reflecting coatings, kind of gas-filling, pane distance and number of panes is studied. Furthermore a dependence of the u-value on the temperature difference between room and atmosphere is described for certain gas-fillings. KW - Verglasung KW - Wärmeverlust KW - Strömungsfeld KW - Temperaturfeld KW - Finite-Volumen-Methode KW - Transportgleichung KW - Wärmeübertragung KW - Energietransport KW - Konvektion KW - Leitung KW - Strahlung KW - k-Wert KW - transport of energy KW - thermal glazings KW - conduction KW - radiation KW - convection Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20040220-458 ER - TY - THES A1 - Pastohr, Henry T1 - Thermodynamische Modellierung eines Aufwindkraftwerkes T1 - Thermodynamical modelling of an upwind power plant N2 - Die Energieversorgung auf der Erde wird zukünftig zu einem Problem. Bedingt ist dies durch eine fortschreitende Verknappung der natürlichen Ressourcen, wie Kohle, Gas und Öl sowie einer Zunahme der CO2-Konzentration und anderer Schadstoffe in der Atmosphäre. Regenerative Energiequellen müssen genutzt werden, um den steigenden Energiebedarf zu sichern. Eine interessante Möglichkeit zur Nutzung der Solarenergie stellt das Aufwindkraftwerk dar. Das Aufwindkraftwerk besteht aus einem Kamin, um den ein Glasdachkollektor auf dem Erdboden angeordnet ist. Am Fuße des Kamins befinden sich Turbinen und Generatoren. Die einfallende Solarenergie wird hauptsächlich über die Wechselwirkung mit dem Erdreich in thermische Energie, in kinetische Energie, in Rotationsenergie und in elektrische Energie umgewandelt. Das Ziel der Arbeit bestand in der physikalisch-mathematischen Modellierung, der genaueren Erkennung des Wirkprinzips und der Diskussion der Anlagenparameter Leistung und Wirkungsgrad. Im Rahmen dieser Aufgabe wurden dazu stationäre und instationäre Computational Fluid Dynamic (CFD) Modelle und stationäre und instationäre vereinfachte Modelle entwickelt, diskutiert und miteinander verglichen. Grundlegend neue Erkenntnisse wurden bei den Verläufen der Temperaturen im Kollektor, insbesondere der Erdoberflächentemperatur erreicht. Parameteranpassungen im Wärmeübergangsmodell und Widerstandsmodell führten für vier ausgewählte, stationäre Sonnenenergien auf eine gute Übereinstimmung zwischen den Ergebnissen (Temperaturhub, Druckentnahme, Leistung und Wirkungsgrad) des stationären, hybriden Modells und des stationären CFD-Modells. Weiterhin stimmen die lokalen Größen Wärmeübergangskoeffizient, Erdoberflächentemperatur, Lufttemperatur und Glasdachtemperatur gut zwischen den Modellen überein. Mit dem CFD Modell wurden der Prototyp und 3 Großkraftwerke berechnet. Mit dem entwickelten instationären FDM-Modell wurden erstmalig numerische Langzeitsimulationen (1 Jahr) durchgeführt. Zur Überprüfung des Modells wurden die Ergebnisse mit Messwerten aus Manzanares verglichen, wobei eine gute Übereinstimmung erreicht werden konnte. Das Verständnis für die stattfindenden thermodynamischen und strömungsmechanischen Prozesse in einem Aufwindkraftwerk konnte durch die Arbeit maßgeblich verbessert werden. N2 - The energy supply on our earth will become a problem in future. This is conditional by a shortage of the natural source, like coal, gas and oil, as well as an increase in the concentration of gasous CO2 in the atmosphere. Regenerative energy sources must be used more increasingly to saveguard the increasing energy consumption. Upwind power plants represent an interesting possibility for the use of solar energy. The upwind power plant consist of an collector, an chimney and one ore several turbines. The collector heats the air by the interaction with the ground. The glass reflects the infrared radiation of the ground. The Chimney provides a large density difference between the collector exit and the atmosphere. The goal of this work was the mathematical und physical modelling of the thermodynamics in and around an upwind power plant. Steady and unsteady CFD models and steady and unsteady simplified models were developed and compared. Basically new knowledge was reached at the courses of the temperatures in the collector. A very good agreement between the results of the steady hybrid model and the steady CFD model (temperature difference of the collector, pressure at the turbine, power and degree of effectiveness) could be found for four solar energies. Furthermore, the local values of heat-transfer coefficient, soil temperature, temperature of the fluid and the temperature of the glass roof compare very well beetwen the models. The prototyp manzanares and three large power plants were solved with the developed CFD model. Numeric long time simulations (1 year) were carried out for the first time with the developed unsteady Finite-Difference-Model. The model was compared with results of the project Manzanares. A good agreement was found. The knowledge of the thermodynamical und fluid dynamical processes in an upwind power plant were improved substantial by this work. KW - Aufwindkraftwerk KW - Numerische Strömungsmechanik KW - Mathematisches Modell KW - Thermodynamik KW - Sonnenenergie KW - Sonnenkollektor KW - upwind power plant KW - CFD KW - mathematical modelling KW - thermodynamics KW - solar energy Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20040803-867 ER - TY - THES A1 - Völker, Conrad T1 - Untersuchungen hinsichtlich des Einflusses von PCM auf die Raumlufttemperatur T1 - Impact of PCM on indoor temperatures N2 - Das Ziel der vorliegenden Diplomarbeit war es, „Untersuchungen hinsichtlich des Einflusses von Phase Change Materials auf die Raumlufttemperatur“ durchzuführen und anschließend die Ergebnisse auszuwerten. Dabei galt es, thermodynamische Grundlagen zu erläutern sowie den derzeitigen Stand der Forschung darzulegen. Dies wurde umfassend bearbeitet, allerdings kann hierbei aufgrund des Umfangs und der Vielfalt im Bereich der internationalen PCM-Forschung kein Anspruch auf Vollständigkeit erhoben werden. Ein Hauptteil dieser Arbeit bestand darin, den Versuchsaufbau der Referenzräume im Eiermann-Bau in Apolda als Grundlage für spätere Messungen detailliert zu beschreiben. Dabei wurde auf die gesamte Messanlage, die eingebrachten PCM sowie auf daraus resultierende physikalische Kenngrößen ausführlich eingegangen. Es galt, geometrische, chemische und physikalische Einflüsse einzuschätzen, aber auch Schwachstellen aufzudecken, um die später folgenden Messreihen exakt auswerten zu können. Als kritisch einzuschätzende Größe fiel dabei besonders das eingebrachte Salzgemisch auf, welches hinsichtlich des Schmelz- und Kristallisationsbereiches als kaum beurteilbar auffiel. Dies konnte auch nach mehreren Untersuchungen, hier ist insbesondere die dynamische Differenzkalorimetrie zu nennen, nicht hinreichend geklärt werden. Basierend auf diesen Erkenntnissen wurden vergleichende Messreihen durchgeführt, welche durch verschiedene Luftwechselraten gestaltet wurden. Im Maximum konnte dabei im PCM-konditionierten Raum eine Reduktion der Temperatur um 6 K erreicht werden. Dabei muss allerdings berücksichtigt werden, dass diese Differenz größtenteils auf die thermische Masse des Salzgemischs zurückgeführt werden kann. Eine abschließende Messung ohne Salzgemisch zeigte, dass aufgrund des latenten Wärmespeichervermögens des PCM-Putzes lediglich eine thermische Differenz von 2 K erreicht werden kann. Hinsichtlich der Luftwechselrate ist anzumerken, dass die erwartete, vergleichsweise zügige Auskühlung trotz Lüftung in der Praxis nicht nachvollzogen werden konnte. Zur Auswertung der gewonnenen Messwerte galt es, das am Lehrstuhl Bauphysik vorhandene mathematische Minimalmodell auf die am Objekt vorhandenen Randbedingungen anzupassen. Aus den Datenwolken der Atmosphärentemperatur sowie der Globalstrahlung mussten Funktionen approximiert werden, da diese äußeren Zwänge einen entscheidenden Einfluss auf den Verlauf der Innenraumtemperatur ausüben. Die Ergebnisse der Berechungen des Temperaturverlaufs können als zufrieden stellend betrachtet werden, jedoch wurde deutlich, dass ein genaues Nachstellen nicht möglich ist. Dies ist vor allem auf die Tatsache zurückzuführen, dass das Minimalmodell lediglich eine Beschreibung der wesentlichen Prozesse mathematisch abbildet. Eine kritische Auseinandersetzung hinsichtlich allgemeiner Standpunkte als auch der Anwendbarkeit auf die Referenzräume wurde abschließend diskutiert. KW - Latentwärmespeicher KW - Raumlufttemperatur KW - PCM KW - Phase Change Materials Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-6639 N1 - Der Volltext-Zugang wurde im Zusammenhang mit der Klärung urheberrechtlicher Fragen mit sofortiger Wirkung gesperrt. ER - TY - THES A1 - Hoffmann, Sabine T1 - Numerische und experimentelle Untersuchung von Phasenübergangsmaterialien zur Reduktion hoher sommerlicher Raumtemperaturen T1 - Numerical and experimental investigation on phase change materials to reduce high indoor temperatures during summer N2 - Moderne Büroarchitektur mit Räumen in Leichtbauweise und großen transparenten Fassa-denanteilen verschärft im Zusammenwirken mit hohen internen Lasten die Problematik der sommerlichen Überhitzung in Gebäuden. Phasenübergangsmaterialien (PCM: phase change materials) stellen eine interessante Möglichkeit dar, sommerliche Überhitzung in Gebäuden ohne aufwändige Anlagentechnik wie beispielsweise Klimaanlagen zu reduzieren. Der thermische Komfort in Räumen, die mit einem PCM-Putz ausgestattet sind, kann signifikant erhöht werden. Die Arbeit untersucht Anwendungsmöglichkeiten und Optimierungspotential eines PCM-Putzes auf experimentelle und numerische Weise. Zur Untersuchung des PCM-Putzes wurden materialtechnische und experimentelle sowie numerische und numerisch-analytische Methoden eingesetzt. Die Kenntnis der thermischen Parameter des PCM-Putzes ist unablässig für die Berechnung der möglichen Temperaturreduktionen. Zur Bestimmung der Latentwärme, des qualitativen Schmelz- und Erstarrungsprozesses sowie des Temperaturintervalls, in dem der Phasenübergang stattfindet, wurden Messungen mit einem Differential Scanning Calorimeter (DSC) durchgeführt. Für die experimentelle Untersuchung des PCM-Putzes wurden zwei identische Testräume in Leichtbauweise erstellt. Die Räume wurden im Verifikationsobjekt „Eiermannbau“ des Sonderforschungsbereiches SFB 524 der Bauhaus-Universität Weimar gemessen. Nach der Überprüfung, dass sich beide Räume thermisch gleich verhalten, wurde ein Raum mit dem PCM-Putz und der zweite Raum mit einem vergleichbaren Innenputz ohne PCM verputzt. Thermoelemente zur Temperaturmessung im Bauteil, an der Oberfläche und zur Raumlufttemperaturbestimmung wurden angebracht und mit einer Messwerterfassungsanlage verbunden. Der Verlauf der Außenlufttemperatur und die Globalstrahlung am Standort der Versuchsräume wurden aufgezeichnet, um einen Klimadatensatz zu erstellen. Für die Berechnung der Temperaturverteilung in einem PCM-Bauteil mit kontinuierlichem Phasenübergang existiert keine geschlossene analytische Lösung. Daher wurde ein numerischer Ansatz gewählt, bei dem der Phasenübergang im Temperaturbereich T1 bis T2 mit Hilfe einer temperaturabhängigen Wärmekapazität c(T) innerhalb der erweiterten Fou-rier’schen Wärmeleitungsgleichung dargestellt wird. Die Funktion c(T) wird auf Basis der DSC-Messungen bestimmt. Die Modellierung erfolgte mit einem Finite-Differenzen-Verfahren auf Grundlage der Fourier’schen Wärmeleitungsgleichung. Im Rahmen der Arbeit wurde ein PCM-Modul entwickelt, das in ein Gebäudesimulationsprogramm implementiert wurde. Mit dem neuen Modul lassen sich sowohl die Temperaturverläufe in einem PCM-Bauteil wie auch seine Wechselwirkung mit dem Raumklima darstellen. Eine Validierung des entwickelten PCM-Moduls anhand von zahlreichen experimentellen Daten der Versuchsräume wurde für das PCM-Modul erfolgreich durchgeführt. Sommerliche Überhitzungsstunden können durch PCM in Wand- und Deckenelementen deutlich reduziert werden. Der PCM-Putz eignet sich vor allem für Anwendungen in Leichtbauten wie z.B. moderne Büroräume. In Räumen, in denen bereits eine ausreichende thermische Masse vorhanden ist, ist die Temperaturreduktion durch PCM nur gering. Kann das PCM während der Nachtstunden nicht erstarren, erschöpft sich seine Fähigkeit zur Latentwärmespeicherung. Erhöhte Nachtlüftung führt bei entsprechend niedrigen Außentemperaturen zu höherem Wärmeübergang und kann damit zur besseren Entladung des PCM beitragen. Im Rahmen der Dissertation konnten Aussagen zur idealen Phasenübergangstemperatur in Abhängigkeit des verwendeten Materials und der Schichtdicke getroffen werden. Die Reduktion der Oberflächentemperaturen, die sich bei Einsatz eines PCM-Putzes unter geeigneten Randbedingungen ergibt, beträgt 2.0 - 3.5 K für eine Putzschicht von 1 cm und 3.0 - 5.0 K für eine Putzschicht von 3 cm. Diese Werte wurden sowohl numerisch als auch durch experimentelle Untersuchungen ermittelt. Die Reduktion der Lufttemperaturen aufgrund einer Konditionierung des Raumes mit PCM-Putz beträgt bei geeigneten thermischen Verhältnissen ca. 1.0 - 2.5 K für eine Putzschicht von 1 cm und 2.0 - 3.0 K für eine Putzschicht von 3 cm. Die operative Temperatur als wichtiger Komfortparameter kann durch den Einsatz des PCM-Putzes um bis zu 4 K gesenkt werden. Damit lässt sich mit Hilfe eines PCM-Putzes die thermische Behaglichkeit in einem Raum deutlich erhöhen. N2 - Modern office architecture with light-weight constructions, huge transparent facades and high internal heat loads aggravate the problem of overheating in buildings during summer. Phase Change Materials (PCM) are an interesting possibility to reduce overheating of buildings without expensive air-conditioning. The thermal comfort in rooms that are plastered with a PCM-plaster can be significantly increased. The thesis investigates fields of application and the potential for optimisation of a PCM-plaster in experimental and numerical way. For the investigation of the PCM-plaster investigations on the material properties were applied as well as experimental, numerical and analytical methods. The knowledge of the thermal properties of the PCM-plaster is indispensable to calculate the potential temperature reductions. Differential scanning measurements (DSC) were conducted to determine the latent heat of the material, the quality of melting and solidification and the temperature range in which the phase transition occurs. For the experimental investigation of the PCM-plaster two identical test rooms were erected as light-weight constructions. The rooms were monitored in the verification building “Eiermannbau” of the Collaborative Research Center (Sonderforschungsbereich) 524 of Bauhaus-Universität Weimar. After having ensured that both rooms behave thermally identically, one room was plastered with the PCM-plaster and the second one was plastered with a comparable conventional plaster. Thermocouples were added to measure air temperature and the readings went into a data acquisition. The course of ambient temperature and global radiation was measured as well to generate a climate data file. There is no closed analytical solution to calculate the temperature allocation in a PCM-material that shows a continuous phase transition. Therefore a numerical approach was chosen where the phase change process was described using a temperature dependent function of heat capacity c(T) in the temperature range of phase transition T1 to T2. The function c(T) is determined based on DSC-measurements. The numerical modelling was realised by modifying the Fourier equation of heat conduction with a finite difference approach. Within the thesis a PCM module was developed and implemented in a thermal building simulation software. With this new module the temperature allocation in a PCM-construction can be calculated as well as its interaction with the room. The validation of the developed PCM-module based on the readings of the test rooms was successful. Overheating hours during summer can be reduced significantly when using PCM in walls and ceilings. The PCM-plaster is especially useful for light-weight constructions as typical modern office rooms. In rooms where a significant thermal mass can be already found, the effect of PCM is more humble. If the PCM cannot solidify during night time its ability to store heat wears out. An increased ventilation during night time leads to a higher heat transfer if ambient temperatures are low enough and can therefore help the solidification of PCM. The thesis could give advices for the ideal phase change temperature depending on the material and on the layer thickness used. When using a PCM-plaster of 1 cm, surface temperatures can be lowered by 2.0 – 3.5 K under specific boundary conditions. The temperature reduction ranges from 3.0 -5.0 K for a PCM-plaster of 3 cm. These values were found in the numerical investigation as well as in the experiments. The reduction of room temperature due to the use of PCM-plaster was 1.0 – 2.5 K for a 1 cm layer and 2.0 – 3.0 for a 3 cm layer of PCM-plaster. The operative temperature as important comfort parameter was lowered by up to 4 K when using PCM-plaster. The thermal comfort in a room can thus be increased significantly with the investigated material. KW - Bauphysik KW - Phasenübergangsmaterialien KW - PCM-Putz KW - Latentwärmespeicher KW - sommerlicher Wärmeschutz KW - Gebäudesimulation ESP-r KW - phase change materials KW - PCM-plaster KW - latent heat storage KW - thermal protection KW - thermal building simulation Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20070709-8790 ER - TY - JOUR A1 - Benz, Alexander A1 - Taraben, Jakob A1 - Lichtenheld, Thomas A1 - Morgenthal, Guido A1 - Völker, Conrad T1 - Thermisch-energetische Gebäudesimulation auf Basis eines Bauwerksinformationsmodells JF - Bauphysik N2 - Für eine Abschätzung des Heizwärmebedarfs von Gebäuden und Quartieren können thermisch-energetische Simulationen eingesetzt werden. Grundlage dieser Simulationen sind geometrische und physikalische Gebäudemodelle. Die Erstellung des geometrischen Modells erfolgt in der Regel auf Basis von Bauplänen oder Vor-Ort-Begehungen, was mit einem großen Recherche- und Modellierungsaufwand verbunden ist. Spätere bauliche Veränderungen des Gebäudes müssen häufig manuell in das Modell eingearbeitet werden, was den Arbeitsaufwand zusätzlich erhöht. Das physikalische Modell stellt die Menge an Parametern und Randbedingungen dar, welche durch Materialeigenschaften, Lage und Umgebungs-einflüsse gegeben sind. Die Verknüpfung beider Modelle wird innerhalb der entsprechenden Simulations-software realisiert und ist meist nicht in andere Softwareprodukte überführbar. Mithilfe des Building Information Modeling (BIM) können Simulationsdaten sowohl konsistent gespeichert als auch über Schnittstellen mit entsprechenden Anwendungen ausgetauscht werden. Hierfür wird eine Methode vorgestellt, die thermisch-energetische Simulationen auf Basis des standardisierten Übergabe-formats Industry Foundation Classes (IFC) inklusive anschließender Auswertungen ermöglicht. Dabei werden geometrische und physikalische Parameter direkt aus einem über den gesamten Lebenszyklus aktuellen Gebäudemodell extrahiert und an die Simulation übergeben. Dies beschleunigt den Simulations-prozess hinsichtlich der Gebäudemodellierung und nach späteren baulichen Veränderungen. Die erarbeite-te Methode beruht hierbei auf einfachen Modellierungskonventionen bei der Erstellung des Bauwerksinformationsmodells und stellt eine vollständige Übertragbarkeit der Eingangs- und Ausgangswerte sicher. Thermal building simulation based on BIM-models. Thermal energetic simulations are used for the estimation of the heating demand of buildings and districts. These simulations are based on building models containing geometrical and physical information. The creation of geometrical models is usually based on existing construction plans or in situ assessments which demand a comparatively big effort of investigation and modeling. Alterations, which are later applied to the structure, request manual changes of the related model, which increases the effort additionally. The physical model represents the total amount of parameters and boundary conditions that are influenced by material properties, location and environmental influences on the building. The link between both models is realized within the correspondent simulation soft-ware and is usually not transferable to other software products. By Applying Building Information Modeling (BIM) simulation data is stored consistently and an exchange to other software is enabled. Therefore, a method which allows a thermal energetic simulation based on the exchange format Industry Foundation Classes (IFC) including an evaluation is presented. All geometrical and physical information are extracted directly from the building model that is kept up-to-date during its life cycle and transferred to the simulation. This accelerates the simulation process regarding the geometrical modeling and adjustments after later changes of the building. The developed method is based on simple conventions for the creation of the building model and ensures a complete transfer of all simulation data. KW - Building Information Modeling KW - Energiebedarf KW - Gebäudehülle KW - Schnittstelle KW - Simulation KW - BIM KW - Gebäudesimulation KW - IFC-basierte Gebäudesimulation KW - thermische Gebäudehülle KW - building simulation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181221-38354 N1 - Copyright 2018 Ernst & Sohn. Dieser Artikel kann für den persönlichen Gebrauch heruntergeladen werden. Andere Verwendungen bedürfen der vorherigen Zustimmung der Autoren und des Verlags Ernst & Sohn. Der folgende Artikel erschien in der Bauphysik 40 (2), 2018 und kann unter folgendem Link abgerufen werden. https://www.ernst-und-sohn.de/app/artikelrecherche/artikel.php?lang=de&ID=38470&utm_source=eus&utm_medium=artikel-db&utm_campaign=Bp_2018_2 IS - 40, Heft 2 SP - 61 EP - 67 ER - TY - JOUR A1 - Alsaad, Hayder A1 - Völker, Conrad T1 - Der Kühlungseffekt der personalisierten Lüftung T1 - The cooling effect of personalized ventilation systems JF - Bauphysik N2 - Personalisierte Lüftung (PL) kann die thermische Behaglichkeit sowie die Qualität der eingeatmeten Atemluft verbessern, in dem jedem Arbeitsplatz Frischluft separat zugeführt wird. In diesem Beitrag wird die Wirkung der PL auf die thermische Behaglichkeit der Nutzer unter sommerlichen Randbedingungen untersucht. Hierfür wurden zwei Ansätze zur Bewertung des Kühlungseffekts der PL untersucht: basierend auf (1) der äquivalenten Temperatur und (2) dem thermischen Empfinden. Grundlage der Auswertung sind in einer Klimakammer gemessene sowie numerisch simulierte Daten. Vor der Durchführung der Simulationen wurde das numerische Modell zunächst anhand der gemessenen Daten validiert. Die Ergebnisse zeigen, dass der Ansatz basierend auf dem thermischen Empfinden zur Evaluierung des Kühlungseffekts der PL sinnvoller sein kann, da bei diesem die komplexen physiologischen Faktoren besser berücksichtigt werden. N2 - Personalized ventilation (PV) can improve thermal comfort and inhaled air quality by supplying air to each workstation separately. This study investigates the impact of PV on the thermal state of the users under summer boundary conditions. Two approaches to evaluating the cooling effect of PV were investigated, based on equivalent temperature and based on thermal sensation. Both approaches implemented measured and simulated values of the cooling effect of PV. Before conducting the simulations, the numerical model was first validated against measured data collected in a climate chamber equipped with a thermal manikin. Results indicated that the thermal sensation approach can be more suitable for evaluating the cooling effect of PV due to the complex physiological factors it considers. KW - Lüftung KW - Strömung KW - Raumklima KW - Temperatur KW - personalized ventilation KW - computational fluid dynamics KW - Simulation KW - personalisierte Lüftung KW - äquivalente Temperatur KW - thermisches Empfinden Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20201020-42723 UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/bapi.202000018 N1 - © 2020 Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin. Dieser Artikel kann für den persönlichen Gebrauch heruntergeladen werden. Andere Verwendungen bedürfen der vorherigen Zustimmung der Autoren und des Verlags Ernst & Sohn. Der folgende Artikel erschien in der Bauphysik 42 (2020), Heft 5, 218-225, DOI: 10.1002/bapi.202000018 VL - 2020 IS - volume 42, issue 5 SP - 218 EP - 225 PB - Ernst & Sohn bei John Wiley & Sons CY - Hoboken ER - TY - INPR A1 - Vogel, Albert A1 - Benz, Alexander A1 - Völker, Conrad T1 - Untersuchung des Wärmeübergangs von zyklisch beanspruchten Betonzylindern N2 - Wiederkehrende Belastungen, wie sie beispielsweise an Brücken oder Windenergieanlagen auftreten, können innerhalb der Nutzungsdauer solcher Bauwerke bis zu 1.000.000.000 Lastwechsel erreichen. Um das dadurch eintretende Ermüdungsverhalten von Beton zu untersuchen, werden diese zyklischen Beanspruchungen in mechanischen Versuchen mit Prüfzylindern nachgestellt. Damit Versuche mit solch hohen Lastwechselzahlen in akzeptablen Zeitdauern durchgeführt werden können, wird die Belastungsfrequenz erhöht. Als Folge dieser erhöhten Belas-tungsfrequenz erwärmen sich allerdings die Betonprobekörper, was zu einem früheren, unrealistischen Versagenszeitpunkt führen kann, weshalb die Erwärmung begrenzt werden muss. Um die Wärmefreisetzung in der Probe zu untersuchen, wurden Versuche und Simulationen durchgeführt. Im Beitrag wird die analytische und messtechnische Analyse des Wärmeübergangs an erwärmten Betonzylindern vorgestellt. Resultierend daraus wird eine Möglichkeit zur Reduktion der Erwärmung an zyklisch beanspruchten Betonzylindern vorgestellt. N2 - Periodic load cycles, such as those that occur on bridges or wind turbines, are of great importance for dynamic long-term considerations of concrete. Within the life span of such structures, up to 1,000,000,000 load changes can be expected. To determine the fatigue strength, the resistance to periodic loads can be determined in a short time in laboratory tests by increasing the load frequency. As a result of this increased load frequency, however, the concrete test specimens heat up, which can lead to an earlier, unrealistic time of failure, which is why the heating must be limited. Therefore, tests and simulations were carried out to investigate the heat release in the sample. In this article, the analytical analysis and measurements of the heat release of heated concrete cylinders are presented. As a conclusion, a possibility of reducing the temperature of dynamically stressed concrete cylinders is introduced. KW - Zyklische Beanspruchung KW - Wärmeübergang KW - Wärmeübergangskoeffizient KW - Dissipation KW - Wärmeübergangskoeffizient an Zylinder KW - heat transfer coefficient for cylinders KW - cyclic load Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200619-41813 N1 - This is the pre-peer reviewed version of the following article: https://onlinelibrary.wiley.com/doi/abs/10.1002/bapi.202000004, which has been published in final form at https://doi.org/10.1002/bapi.202000004 VL - 2020 IS - Volume 42, Issue 3 SP - 131 EP - 138 PB - John Wiley and Sons ER - TY - THES A1 - Arnold, Jörg T1 - Raumakustische Rekonstruktion der Schlosskapelle des Weimarer Residenzschlosses im Zustand von 1658 - 1774 N2 - In dieser Arbeit wird eine umfassende Untersuchung der raumakustischen Qualität der Schlosskapelle des Weimarer Residenzschlosses für den Zustand, wie sie zwischen 1658 und 1774 existierte, durchgeführt. Die Schlosskapelle als sakraler Raum innerhalb der Schlossanlage diente der Ausübung religiöser Handlungen und war fester Bestandteil des kulturellen Lebens am Weimarer Hof. Eine wesentliche Bedeutung erlangte sie in diesem Zusammenhang als musikalische Wirkungsstätte Johann Sebastian Bachs. Mit ihrer akustischen Qualität hatte sie einen erheblichen Einfluss auf sein musikalisches Schaffen. Die Untersuchung der raumakustischen Situation stellt damit eine notwendige Grundlage für eine musikwissenschaftliche Einordnung der Schlosskapelle als Aufführungsstätte geistlicher Kompositionen dar. Der raumakustische Zustand der Weimarer Schlosskapelle ist eng mit der baulichen Entwicklung der gesamten Schlossanlage verbunden, die infolge äußerer Einflüsse einem steten Wandel unterlag. Die Umgestaltung der Schlosskapelle zu Beginn des 17. Jahrhunderts erfolgte nach barocken Raumvorstellungen. Einen wesentlichen Einfluss auf die Gestaltung des Innenraumes übte zudem die reformierte Kirche mit ihren liturgischen Anforderungen aus. Die historische Entwicklung der architektonischen Stilepoche sowie der protestantischen Kirche wird in Bezug zu dem akustischen Erscheinungsbild der Schlosskapelle näher untersucht. Ausgehend von der architektonischen Rekonstruktion wird die Raumstruktur der historischen Schlosskapelle in ein Computermodell übertragen, mit dem die Berechnung akustischer Bewertungskriterien möglich ist. Eine ausgiebige Recherche nach verwendeten Materialien und der Ausbildung baulicher Konstruktionen ist dabei die Grundvoraussetzung für aussagekräftige Simulationsergebnisse. Die Wahl der Materialparameter sowie der Einfluss der geometrischen Besonderheiten der Weimarer Schlosskapelle auf die simulierten Schallfeldparameter werden durch die Untersuchung eines Referenzobjektes verifiziert. Dafür werden die akustischen Bewertungskriterien mit einer raumakustischen Messung ermittelt und mit Simulationsergebnissen verglichen. Ein besonderes Interesse bei der Simulation der Schlosskapelle gilt der Nachhallzeit als Charakteristikum der Halligkeit, die in sakralen Gebäuden die auffälligste akustische Raumeigenschaft darstellt. Mit der rekonstruierten Nachhallzeit wird die Schlosskapelle mit barocken Kirchen verglichen und bezüglich ihrer Lage im baustiltypischen Bereich beurteilt. Der Direktschall und die im zeitig folgenden Reflexionen sind bei der raumakustischen Simulation maßgeblicher Gegenstand der Betrachtung. Während der Nachhall das Verschmelzen einzelner Töne zu einem Gesamtklang fördert, ist der Direktschall für die Deutlichkeit von Sprache und der klanglichen Durchsichtigkeit von musikalischen Strukturen verantwortlich. Der Einfluss des Direktschalls wird mit speziellen Energiekriterien beurteilt, mit denen gezielte Aussagen über die akustische Qualität einzelner Platzbereiche möglich sind. Die unterschiedlichen akustischen Anforderungen an die Schlosskapelle bei der jeweiligen Nutzung des Raumes werden mit den Energiekriterien differenziert untersucht und bewertet. KW - Raumakustik KW - Rekonstruktion KW - Computersimulation KW - Schall KW - Kirchenbau KW - Raumakustische Rekonstruktion KW - Weimar / Schloss Wilhelmsburg / Schlosskapelle Himmelsburg KW - Akustik im Barock KW - Musik im Barock KW - room acoustics KW - computer simulation KW - historic church KW - historic palace Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-6424 ER - TY - JOUR A1 - Benz, Alexander A1 - Taraben, Jakob A1 - Lichtenheld, Thomas A1 - Morgenthal, Guido A1 - Völker, Conrad T1 - Thermisch-energetische Gebäudesimulation auf Basis eines Bauwerksinformationsmodells JF - Bauphysik N2 - Für eine Abschätzung des Heizwärmebedarfs von Gebäuden und Quartieren können thermisch-energetische Simulationen eingesetzt werden. Grundlage dieser Simulationen sind geometrische und physikalische Gebäudemodelle. Die Erstellung des geometrischen Modells erfolgt in der Regel auf Basis von Bauplänen oder Vor-Ort-Begehungen, was mit einem großen Recherche- und Modellierungsaufwand verbunden ist. Spätere bauliche Veränderungen des Gebäudes müssen häufig manuell in das Modell eingearbeitet werden, was den Arbeitsaufwand zusätzlich erhöht. Das physikalische Modell stellt die Menge an Parametern und Randbedingungen dar, welche durch Materialeigenschaften, Lage und Umgebungs-einflüsse gegeben sind. Die Verknüpfung beider Modelle wird innerhalb der entsprechenden Simulations-software realisiert und ist meist nicht in andere Softwareprodukte überführbar. Mithilfe des Building Information Modeling (BIM) können Simulationsdaten sowohl konsistent gespeichert als auch über Schnittstellen mit entsprechenden Anwendungen ausgetauscht werden. Hierfür wird eine Methode vorgestellt, die thermisch-energetische Simulationen auf Basis des standardisierten Übergabe-formats Industry Foundation Classes (IFC) inklusive anschließender Auswertungen ermöglicht. Dabei werden geometrische und physikalische Parameter direkt aus einem über den gesamten Lebenszyklus aktuellen Gebäudemodell extrahiert und an die Simulation übergeben. Dies beschleunigt den Simulations-prozess hinsichtlich der Gebäudemodellierung und nach späteren baulichen Veränderungen. Die erarbeite-te Methode beruht hierbei auf einfachen Modellierungskonventionen bei der Erstellung des Bauwerksinformationsmodells und stellt eine vollständige Übertragbarkeit der Eingangs- und Ausgangswerte sicher. Thermal building simulation based on BIM-models. Thermal energetic simulations are used for the estimation of the heating demand of buildings and districts. These simulations are based on building models containing geometrical and physical information. The creation of geometrical models is usually based on existing construction plans or in situ assessments which demand a comparatively big effort of investigation and modeling. Alterations, which are later applied to the structure, request manual changes of the related model, which increases the effort additionally. The physical model represents the total amount of parameters and boundary conditions that are influenced by material properties, location and environmental influences on the building. The link between both models is realized within the correspondent simulation soft-ware and is usually not transferable to other software products. By Applying Building Information Modeling (BIM) simulation data is stored consistently and an exchange to other software is enabled. Therefore, a method which allows a thermal energetic simulation based on the exchange format Industry Foundation Classes (IFC) including an evaluation is presented. All geometrical and physical information are extracted directly from the building model that is kept up-to-date during its life cycle and transferred to the simulation. This accelerates the simulation process regarding the geometrical modeling and adjustments after later changes of the building. The developed method is based on simple conventions for the creation of the building model and ensures a complete transfer of all simulation data. KW - Gebäudehülle KW - Energiebedarf KW - Simulation KW - Schnittstelle KW - Building Information Modeling KW - Gebäudesimulation KW - BIM KW - IFC-basierte Gebäudesimulation KW - thermische Gebäudehülle KW - building simulation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181102-38190 UR - https://e-pub.uni-weimar.de/opus4/frontdoor/index/index/docId/3835 N1 - Copyright 2018 Ernst & Sohn. Dieser Artikel kann für den persönlichen Gebrauch heruntergeladen werden. Andere Verwendungen bedürfen der vorherigen Zustimmung der Autoren und des Verlags Ernst & Sohn. Der folgende Artikel erschien in der Bauphysik 40 (2), 2018 und kann unter folgendem Link abgerufen werden. https://www.ernst-und-sohn.de/app/artikelrecherche/artikel.php?lang=de&ID=38470&utm_source=eus&utm_medium=artikel-db&utm_campaign=Bp_2018_2. IS - 40, Heft 2 SP - 61 EP - 67 ER -