TY - THES A1 - Linne, Stefan T1 - Lösbare kraftschlüssige Verbindungen für modulare Bauwerke aus Faserverbundkunststoffen T1 - Solvable force-fit joining technology for modular structures made of fiber reinforced polymers N2 - In der vorliegenden Arbeit wird eine kraftschlüssige Verbindungstechnik für modulare, schalenartige Faserverbundbauteile vorgestellt. Die Verbindung basiert auf der Verklebung mit lokal begrenzten Stahlblechen. Aus dem Verbindungsansatz wird die Verklebung zwischen Stahl und Faserverbundkunststoff vertiefend betrachtet. Ziel sind die Wahl von technologischen Randbedingungen, die Erarbeitung eines Vorschlages zur numerischen Berechnung und Bemessung und die Formulierung konstruktiver Empfehlungen zum Entwurf von Verklebungen. Mechanische Kennwerte werden in Zugversuchen ermittelt und direkt auf die nichtlinearen Berechnungen übertragen. Technologische Einflüsse und die Streuungen aus realen Verklebungen werden über die Nachrechnung von Zugscherversuchen in die Bemessung integriert. Es wird gezeigt, dass die Verklebungen ausreichende Festigkeiten und ein zufriedenstellendes Bruchverhalten aufweisen. Die Kombination aus einer Werkstattverklebung und einer baustellengerechten Montage ermöglicht eine materialgerechte und effiziente Verbindungen für Faserverbundkonstruktionen unter den Randbedingungen des Bauwesens. N2 - In this thesis, a force-fit joining technology for modular, shell-like fiber reinforced polymer structures is presented. The connection is based on a local reinforcement with steel sheets with an adhesive bonding to the polymer. The focus of this work is to investigate the adhesive bonding between steel and fiber reinforced polymers. A general concept for the selection of technological constraints as well as suggestions for the numerical analysis and recommendations for the engineering design of the connections are developed. The mechanical properties are experimentally termined by tensile tests. These results were directly incorporated into the nonlinear numerical analysis. Parameters describing technological influences and the stochastic scatter of real bondings were integrated into the analysis by fitting numerical simulations with the experimental data. It is demonstrated that the bondings have a sufficient strength as well as a satisfactory fracture behavior. Furthermore, it is shown that the combination between an adhesive bonding realized off-site and a robust on-site assembly enables the construction of reliable and efficient joints that take into account the specific constraints on a construction site. KW - Verbindungstechnik KW - Kleben KW - Kunststoffkleben KW - Metallkleben KW - Fügen KW - Kraftschluss KW - Oberflächenvorbereitung KW - Zugversuch KW - Direkte numerische Simul KW - materialgerecht KW - modulares Bauwerk KW - lösbare Verbindung KW - Kraftschluss KW - Klebtechnologie KW - MFPA Weimar KW - fiber reinforced polymer KW - adhesive bonding KW - joining KW - force-fit KW - numeric analysis KW - finite element method KW - material properties KW - fracture behavior Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20110831-15547 ER - TY - THES A1 - Schwedler, Michael T1 - Integrated structural analysis using isogeometric finite element methods N2 - The gradual digitization in the architecture, engineering, and construction industry over the past fifty years led to an extremely heterogeneous software environment, which today is embodied by the multitude of different digital tools and proprietary data formats used by the many specialists contributing to the design process in a construction project. Though these projects become increasingly complex, the demands on financial efficiency and the completion within a tight schedule grow at the same time. The digital collaboration of project partners has been identified as one key issue in successfully dealing with these challenges. Yet currently, the numerous software applications and their respective individual views on the design process severely impede that collaboration. An approach to establish a unified basis for the digital collaboration, regardless of the existing software heterogeneity, is a comprehensive digital building model contributed to by all projects partners. This type of data management known as building information modeling (BIM) has many benefits, yet its adoption is associated with many difficulties and thus, proceeds only slowly. One aspect in the field of conflicting requirements on such a digital model is the cooperation of architects and structural engineers. Traditionally, these two disciplines use different abstractions of reality for their models that in consequence lead to incompatible digital representations thereof. The onset of isogeometric analysis (IGA) promised to ease the discrepancy in design and analysis model representations. Yet, that initial focus quickly shifted towards using these methods as a more powerful basis for numerical simulations. Furthermore, the isogeometric representation alone is not capable of solving the model abstraction problem. It is thus the intention of this work to contribute to an improved digital collaboration of architects and engineers by exploring an integrated analysis approach on the basis of an unified digital model and solid geometry expressed by splines. In the course of this work, an analysis framework is developed that utilizes such models to automatically conduct numerical simulations commonly required in construction projects. In essence, this allows to retrieve structural analysis results from BIM models in a fast and simple manner, thereby facilitating rapid design iterations and profound design feedback. The BIM implementation Industry Foundation Classes (IFC) is reviewed with regard to its capabilities of representing the unified model. The current IFC schema strongly supports the use of redundant model data, a major pitfall in digital collaboration. Additionally, it does not allow to describe the geometry by volumetric splines. As the pursued approach builds upon a unique model for both, architectural and structural design, and furthermore requires solid geometry, necessary schema modifications are suggested. Structural entities are modeled by volumetric NURBS patches, each of which constitutes an individual subdomain that, with regard to the analysis, is incompatible with the remaining full model. The resulting consequences for numerical simulation are elaborated in this work. The individual subdomains have to be weakly coupled, for which the mortar method is used. Different approaches to discretize the interface traction fields are implemented and their respective impact on the analysis results is evaluated. All necessary coupling conditions are automatically derived from the related geometry model. The weak coupling procedure leads to a linear system of equations in saddle point form, which, owed to the volumetric modeling, is large in size and, the associated coefficient matrix has, due to the use of higher degree basis functions, a high bandwidth. The peculiarities of the system require adapted solution methods that generally cause higher numerical costs than the standard procedures for symmetric, positive-definite systems do. Different methods to solve the specific system are investigated and an efficient parallel algorithm is finally proposed. When the structural analysis model is derived from the unified model in the BIM data, it does in general initially not meet the requirements on the discretization that are necessary to obtain sufficiently accurate analysis results. The consequently necessary patch refinements must be controlled automatically to allowfor an entirely automatic analysis procedure. For that purpose, an empirical refinement scheme based on the geometrical and possibly mechanical properties of the specific entities is proposed. The level of refinement may be selectively manipulated by the structural engineer in charge. Furthermore, a Zienkiewicz-Zhu type error estimator is adapted for the use with isogeometric analysis results. It is shown that also this estimator can be used to steer an adaptive refinement procedure. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2016,2 KW - Finite-Elemente-Methode KW - NURBS KW - Isogeometrische Analyse KW - finite element method KW - isogeometric analysis KW - mortar method KW - building information modelling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170130-27372 ER - TY - THES A1 - Eckardt, Stefan T1 - Adaptive heterogeneous multiscale models for the nonlinear simulation of concrete N2 - The nonlinear behavior of concrete can be attributed to the propagation of microcracks within the heterogeneous internal material structure. In this thesis, a mesoscale model is developed which allows for the explicit simulation of these microcracks. Consequently, the actual physical phenomena causing the complex nonlinear macroscopic behavior of concrete can be represented using rather simple material formulations. On the mesoscale, the numerical model explicitly resolves the components of the internal material structure. For concrete, a three-phase model consisting of aggregates, mortar matrix and interfacial transition zone is proposed. Based on prescribed grading curves, an efficient algorithm for the generation of three-dimensional aggregate distributions using ellipsoids is presented. In the numerical model, tensile failure of the mortar matrix is described using a continuum damage approach. In order to reduce spurious mesh sensitivities, introduced by the softening behavior of the matrix material, nonlocal integral-type material formulations are applied. The propagation of cracks at the interface between aggregates and mortar matrix is represented in a discrete way using a cohesive crack approach. The iterative solution procedure is stabilized using a new path following constraint within the framework of load-displacement-constraint methods which allows for an efficient representation of snap-back phenomena. In several examples, the influence of the randomly generated heterogeneous material structure on the stochastic scatter of the results is analyzed. Furthermore, the ability of mesoscale models to represent size effects is investigated. Mesoscale simulations require the discretization of the internal material structure. Compared to simulations on the macroscale, the numerical effort and the memory demand increases dramatically. Due to the complexity of the numerical model, mesoscale simulations are, in general, limited to small specimens. In this thesis, an adaptive heterogeneous multiscale approach is presented which allows for the incorporation of mesoscale models within nonlinear simulations of concrete structures. In heterogeneous multiscale models, only critical regions, i.e. regions in which damage develops, are resolved on the mesoscale, whereas undamaged or sparsely damage regions are modeled on the macroscale. A crucial point in simulations with heterogeneous multiscale models is the coupling of sub-domains discretized on different length scales. The sub-domains differ not only in the size of the finite elements but also in the constitutive description. In this thesis, different methods for the coupling of non-matching discretizations - constraint equations, the mortar method and the arlequin method - are investigated and the application to heterogeneous multiscale models is presented. Another important point is the detection of critical regions. An adaptive solution procedure allowing the transfer of macroscale sub-domains to the mesoscale is proposed. In this context, several indicators which trigger the model adaptation are introduced. Finally, the application of the proposed adaptive heterogeneous multiscale approach in nonlinear simulations of concrete structures is presented. N2 - Das nichtlineare Materialverhalten von Beton ist durch die Entwicklung von Mikrorissen innerhalb der heterogenen Materialstruktur gekennzeichnet. In dieser Arbeit wird ein Mesoskalenmodell entwickelt, welches die einzelnen Bestandteile der Materialstruktur explizit auflöst und somit die Simulation dieser Mikrorisse erlaubt. Dadurch können die wirklichen physikalischen Vorgänge, welche das komplexe nichtlineare Verhalten von Beton verursachen, durch relativ einfache Materialformulierungen abgebildet werden. Für Beton wird auf der Mesoskala ein 3-Phasenmodell vorgeschlagen, bestehend aus groben Zuschlägen, Mörtelmatrix und Übergangszone zwischen Zuschlag und Matrix. In diesem Zusammenhang wird ein effizienter Algorithmus vorgestellt, welcher ausgehend von einer gegebenen Sieblinie dreidimensionale Kornstrukturen mittels Ellipsoiden simuliert. Im Mesoskalenmodell wird das Zugversagen der Mörtelmatrix durch einen Kontinuumsansatz beschrieben. Um Netzabhängigkeiten, welche durch das Entfestigungsverhalten des Materials hervorgerufen werden, zu reduzieren, kommen nichtlokale Materialformulierungen zum Einsatz. Risse innerhalb der Übergangszone zwischen Zuschlag und Matrix werden, basierend auf einem kohäsiven Modell, mittels eines diskreten Rissansatzes abgebildet. Die Verwendung einer neuen Nebenbedingung innerhalb der Last-Verschiebungs-Zwangsmethode führt zu einer Stabilisierung des iterativen Lösungverfahrens, so dass eine effiziente Simulation von Snap-back Phänomenen möglich wird. Anhand von Beispielen wird gezeigt, dass Mesoskalenmodelle die stochastische Streuung von Ergebnissen und Maßstabseffekte abbilden können. Da auf der Mesoskala die Diskretisierung der inneren Materialstruktur erforderlich ist, steigt im Vergleich zu Simulationen auf der Makroskala der numerische Aufwand erheblich. Aufgrund der Komplexität des numerischen Modells sind Mesoskalensimulationen in der Regel auf kleine Probekörper beschränkt. In dieser Arbeit wird ein adaptiver heterogener Mehrskalenansatz vorgestellt, welcher die Verwendung von Mesoskalenmodellen in nichtlinearen Simulationen von Betonstrukturen erlaubt. In heterogenen Mehrskalenmodellen werden nur kritische Bereiche auf der Mesoskala aufgelöst, während ungeschädigte Bereiche auf der Makroskala abgebildet werden. Ein wichtiger Aspekt in Simulationen mit heterogenen Mehrskalenmodellen ist die Kopplung der auf unterschiedlichen Längenskalen diskretisierten Teilgebiete. Diese unterscheiden sich nicht nur in der Größe der finiten Elemente sondern auch in der Beschreibung des Materials. Verschiedene Methoden zur Kopplung nicht übereinstimmender Vernetzungen - Kopplungsgleichungen, die Mortar-Methode und die Arlequin-Methode - werden untersucht und ihre Anwendung in heterogenen Mehrskalenmodellen wird gezeigt. Ein weiterer wichtiger Aspekt ist die Bestimmung kritischer Regionen. Eine adaptive Lösungsstrategie wird entwickelt, welche die Umwandlung von Makroskalengebieten auf die Mesoskala erlaubt. In diesem Zusammenhang werden Indikatoren vorgestellt, die eine Modellanpassung auslösen. Anhand nichtlinearer Simulationen von Betonstrukturen wird die Anwendung des vorgestellten adaptiven heterogenen Mehrskalenansatzes demonstriert. T2 - Adaptive heterogene Mehrskalenmodelle zur nichtlinearen Simulation von Beton T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2010,1 KW - Beton KW - Mehrskalenanalyse KW - Finite-Elemente-Methode KW - Nichtlineare Finite-Elemente-Methode KW - Schadensmechanik KW - Mehrskalenmodell KW - Adaptives Verfahren KW - concrete KW - multiscale method KW - finite element method KW - continuum damage mechanics KW - adaptive simulation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20100317-15023 ER -