TY - THES A1 - Tatarin, René T1 - Charakterisieren struktureller Veränderungen in zementgebundenen Baustoffen durch akustische zerstörungsfreie Prüfverfahren N2 - Im Rahmen dieser Arbeit wird das Charakterisieren struktureller Veränderungen zementgebundener Baustoffe durch zwei auf dem Ultraschall-Transmissionsverfahren beruhenden Methoden der zerstörungsfreien Prüfung (ZfP) mit mechanischen Wellen vorgenommen. Zur kontinuierlichen Charakterisierung der Erstarrung und Erhärtung frischer zementgebundener Systeme wird ein auf Ultraschallsensoren für Longitudinal- und Scherwellen basierendes Messsystem in Kombination mit zugehörigen Verfahrensweisen zur Datenauswertung konzipiert, charakterisiert und angewandt. Gegenüber der bislang üblichen alleinigen Bewertung der Verfestigung anhand indirekter Ultraschallparameter wie Ausbreitungsgeschwindigkeit, Signalenergie oder Frequenzgehalt der Longitudinalwelle lässt sich damit eine direkte, sensible Erfassung der sich während der Strukturbildung entwickelnden dynamischen elastischen Eigenschaften auf der Basis primärer physikalischer Werkstoffparameter erreichen. Insbesondere Scherwellen und der dynamische Schubmodul sind geeignet, den graduellen Übergang zum Festkörper mit Überschreiten der Perkolationsschwelle sensibel und unabhängig vom Luftgehalt zu erfassen. Die zeitliche Entwicklung der dynamischen elastischen Eigenschaften, die Strukturbildungsraten sowie die daraus extrahierten diskreten Ergebnisparameter ermöglichen eine vergleichende quantitative Charakterisierung der Strukturbildung zementgebundener Baustoffe aus mechanischer Sicht. Dabei lassen sich typische, oft unvermeidbare Unterschiede in der Zusammensetzung der Versuchsmischungen berücksichtigen. Der Einsatz laserbasierter Methoden zur Anregung und Erfassung von mechanischen Wellen und deren Kombination zu Laser-Ultraschall zielt darauf ab, die mit der Anwendung des konventionellen Ultraschall-Transmissionsverfahrens verbundenen Nachteile zu eliminieren. Diese resultieren aus der Sensorgeometrie, der mechanischen Ankopplung und bei einer Vielzahl von Oberflächenpunkten aus einem hohen prüftechnischen Aufwand. Die laserbasierte, interferometrische Erfassung mechanischer Wellen ist gegenüber Ultraschallsensoren rauschbehaftet und vergleichsweise unsensibel. Als wesentliche Voraussetzung der scannenden Anwendung von Laser-Ultraschall auf zementgebundene Baustoffe erfolgen systematische experimentelle Untersuchungen zur laserinduzierten ablativen Anregung. Diese sollen zum Verständnis des Anregungsmechanismus unmittelbar auf den Oberflächen von zementgebundenen Baustoffen, Gesteinskörnungen und metallischen Werkstoffen beitragen, relevante Einflussfaktoren aus den charakteristischen Materialeigenschaften identifizieren, geeignete Prozessparameter gewinnen und die Verfahrensgrenzen aufzeigen. Unter Einsatz von Longitudinalwellen erfolgt die Anwendung von Laser-Ultraschall zur zeit- und ortsaufgelösten Charakterisierung der Strukturbildung und Homogenität frischer sowie erhärteter Proben zementgebundener Baustoffe. Während der Strukturbildung wird erstmals eine simultane berührungslose Erfassung von Longitudinal- und Scherwellen vorgenommen. Unter Anwendung von tomographischen Methoden (2D-Laufzeit¬tomo¬graphie) werden überlagerungsfreie Informationen zur räumlichen Verteilung struktureller Gefügeveränderungen anhand der longitudinalen Ausbreitungsgeschwindigkeit bzw. des relativen dynamischen Elastizitätsmoduls innerhalb von virtuellen Schnittebenen geschädigter Probekörper gewonnen. Als beton-schädigende Mechanismen werden exemplarisch der kombinierte Frost-Tausalz-Angriff sowie die Alkali-Kieselsäure-Reaktion (AKR) herangezogen. Die im Rahmen dieser Arbeit entwickelten Verfahren der zerstörungsfreien Prüfung bieten erweiterte Möglichkeiten zur Charakterisierung zementgebundener Baustoffe und deren strukturellen Veränderungen und lassen sich zielgerichtet in der Werkstoffentwicklung, bei der Qualitätssicherung sowie zur Analyse von Schadensprozessen und -ursachen einsetzen. N2 - In this research, structural changes of cement-based building materials are characterized using two ultrasonic transmission-based methods of non-destructive testing (NDT) with mechanical waves. For continuous characterization of setting and hardening of fresh cementitious materials a measurement system is designed, characterized and applied based on ultrasonic compressional and shear wave transducers in combination with associated data evaluation procedures. In contrast to common non-destructive testing of setting and hardening by means of solely indirect ultrasonic parameters such as pulse velocity, signal energy or frequency content of compressional waves, a direct sensitive recording of dynamic elastic properties can be achieved during the structure formation on the basis of primary physical material parameters. Especially, shear waves and the dynamic shear modulus are suitable to capture the gradual transition to a solid with exceeding percolation threshold in a sensitive manner and independent of air content. The development of dynamic elastic properties, the structure formation rates and the extracted discrete result parameters enable a comparative and quantitative analysis of the structural formation of fresh cementitious materials from a mechanical point of view. As an advantage, often unavoidable differences in the composition of test blends can be taken into account. The application of laser-based techniques for generation and detection of mechanical waves and their combination to laser-ultrasonics eliminates the disadvantages associated with the application of conventional ultrasonic through-transmission techniques. These result from sensor geometry, mechanical coupling and, in case of numerous surface points, due to a high inspection time and effort. Furthermore, the laser-based interferometric detection of mechanical waves is noisy and relatively insensitive compared to application of ultrasonic sensors. As an essential prerequisite, systematic experimental investigations of laser-induced ablative generation are carried out for the scanning application of laser-ultrasonics on cement-based building materials. These investigations contribute to the understanding of the excitation mechanism directly on the surfaces of concrete, natural aggregates and metallic targets and to the identification of relevant influencing factors from the characteristic material properties. By gathering optimized process parameters, the limitations of laser-ultrasonics to concrete are shown. Laser-ultrasonics is applied using compressional waves for time- and space-resolved characterization of the structure formation and homogeneity of fresh and hardened specimen of cement-based building materials. During the structure formation process, the simultaneous contactless acquisition of compressional and shear waves is carried out for the first time. With the implementation of tomographic methods (2D travel-time tomography) it is possible to obtain superposition-free information on the spatial distribution of microstructural changes by means of the longitudinal ultrasonic pulse velocity or the relative dynamic modulus of elasticity within virtual cross-sections of damaged specimens. The combined freeze-thaw de-icing salt attack as well as the alkali-silica reaction (ASR) are investigated as mechanisms of concrete damage. The methods of non-destructive testing developed within the scope of this study offer extended possibilities for the characterization of cement-based building materials and their structural changes and can be applied in a targeted manner in materials development, quality control and in analysis of damage processes and causes. KW - Beton KW - Hydratation KW - Ultraschall KW - Zerstörungsfreie Werkstoffprüfung KW - Lasertechnologie KW - Laser-Ultraschall KW - elastische Parameter KW - Tomographie KW - Strukturbildung KW - Dauerhaftigkeit Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220215-45920 SN - 978-3-7369-7575-0 PB - Cuvillier Verlag CY - Göttingen ER - TY - THES A1 - Trümer, André T1 - Calcinierte Tone als Puzzolane der Zukunft - Von den Rohstoffen bis zur Wirkung im Beton N2 - Vor dem Hintergrund einer stetig wachsenden Nachfrage an Beton wie auch ambitionierter Reduktionsziele beim in der Zementproduktion anfallenden CO2 gelten calcinierte Tone als derzeit aussichtsreichste technische Neuerung im Bereich nachhaltiger Bindemittelkonzepte. Unter Ausnutzung ihrer Puzzolanität soll ein erheblicher Teil der Klinkerkomponente im Zement ersetzt werden, wobei der zu ihrer Aktivierung notwendige Energiebedarf vergleichsweise niedrig ist. Wesentliche Vorteile der Tone sind ihre weltweit nahezu unbegrenzte Verfügbarkeit sowie der äußerst geringe rohstoffbedingte CO2-Ausstoß während der Calcinierung. Schwierigkeiten auf dem Weg der Umsetzung bestehen allerdings in der Vielseitigkeit des Systems, welches durch eine hohe Varietät der Rohtone und des daraus folgenden thermischen Verhaltens gekennzeichnet ist. Entsprechend schwierig ist die Übertragbarkeit von Erfahrungen mit bereits etablierten calcinierten Tonen wie dem Metakaolin, der sich durch hohe Reinheit, einen aufwendigen Aufbereitungsprozess und eine entsprechend hohe Reaktivität auszeichnet. Ziel der Arbeit ist es daher, den bereits erlangten Kenntnisstand auf andere, wirtschaftlich relevante Tone zu erweitern und deren Eignung für die Anwendung im Beton herauszuarbeiten. In einem mehrstufigen Arbeitsprogramm wurde untersucht, inwieweit großtechnisch nutzbare Tone aktivierbar sind und welche Eigenschaften sich daraus für Zement und Beton ergeben. Die dabei festgestellte Reihenfolge Kaolinit > Montmorillonit > Illit beschreibt sowohl die Reaktivität der Brennprodukte als auch umgekehrt die Höhe der optimalen Calciniertemperatur. Auch wandelt sich der Charakter der entstandenen Metaphasen in dieser Abfolge von röntgenamorph und hochreaktiv zu glasig und reaktionsträge. Trotz dieser Einordnung konnte selbst mit dem Illit eine mit Steinkohlenflugasche vergleichbare Puzzolanität festgestellt werden. Dies bestätigte sich anschließend in Parameterversuchen, bei denen die Einflüsse von Rohstoffqualität, Calcinierung, Aufbereitung und Zement hinsichtlich der Reaktivitätsausbeute bewertet wurden. Die Bandbreite der erzielbaren Qualitäten ist dabei immens und gipfelt nicht zuletzt in stark unterschiedlichen Wirkungen auf die Festbetoneigenschaften. Hier machte sich vor allem die für Puzzolane typische Porenverfeinerung bemerkbar, sodass viele von Transportvorgängen abhängige Schadmechanismen unterdrückt wurden. Andere Schadex-positionen wie der Frostangriff ließen sich durch Zusatzmaßnahmen wie dem Eintrag von Luftporen beherrschen. Zu bemängeln sind vor allem die schlechte Verarbeitbarkeit kaolinitischer Metatone wie auch die für Puzzolane stark ausgeprägte Carbonatisierungsneigung. Wesentliches Ergebnis der Arbeit ist, dass auch Tone, die bisher als geringwertig bezüglich des Aktivierungspotentials galten, nutzbare puzzolanische Eigenschaften entwickeln können. So kann selbst ein stark verunreinigter Illit-Ton die Qualität von Flugasche erreichen. Mit stei-gendem Tonmineralgehalt sowie bei Präsens thermisch instabilerer Tonminerale wie Mont-morillonit und Kaolinit erweitert sich das Spektrum nutzbarer Puzzolanitäten bis hin zur hochreaktiven Metakaolin-Qualität. Damit lassen sich gute bis sehr gute Betoneigenschaften erzielen, sodass die Leistungsfähigkeit etablierter Kompositmaterialien erreicht wird. Somit sind die Voraussetzungen für eine umfangreiche Nutzung der erheblichen Tonmengen im Zement und Beton gegeben. Entsprechend können Tone einen effektiven Beitrag zu einer gesteigerten Nachhaltigkeit in der Baustoffproduktion weltweit leisten. KW - Beton KW - Ton Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200214-40968 SN - 978-3-00-065011-6 ER - TY - THES A1 - Voland, Katja T1 - Einfluss der Porosität von Beton auf den Ablauf einer schädigenden Alkali-Kieselsäure-Reaktion N2 - Der Dissertation liegt die Frage zugrunde, welchen Einfluss die Porosität von Beton auf den Ablauf einer schädigenden AKR hat. Insbesondere soll geklärt werden, ob der Einsatz von Gleitschalungsfertigern – anstelle von klassischen schienengeführten Betondeckenfertigern – und die damit verbundene verringerte Porosität der Betone den Ablauf einer schädigenden AKR begünstigt. Eine verringerte Porosität führt zu einer reduzierten Duktilität des Betons, so dass infolge AKR entstehende Zugspannungen schlechter abgebaut werden können. Weiterhin steht ein geringerer Expansionsraum für das entstehende AKR-Gel zur Verfügung. Diese Faktoren können den Ablauf einer AKR begünstigen. Allerdings können extern anstehende Alkalien schlechter in den Beton mit einer verringerten Porosität eindringen. Ferner wird die Diffusion der Alkalien zu den potenziell reaktiven Gesteinskörnungen verlangsamt. Zur Beantwortung der aufgeworfenen Frage wird unter Einsatz einer neuartigen Prüfmethodologie und bei variierender Porosität untersucht, welche Schädigungsparameter maßgebend für den Ablauf und die Intensität einer schädigenden AKR sind. Die berücksichtigten Schädigungsparameter sind die mechanischen Eigenschaften des Betons, der zur Verfügung stehende Expansionsraum und die im Beton ablaufenden Transportvorgänge. Um den Einfluss der jeweiligen Schädigungsparameter spezifizieren zu können, gehen die Prüfungen einerseits von einem hohen internen und andererseits von einem hohen externen AKR-Schädigungspotenzial aus. In beiden Fällen erfolgen die Untersuchungen an langsam reagierenden alkaliempfindlichen Gesteinskörnungen. Die unterschiedlichen Porositäten ergeben sich hauptsächlich durch Variation des w/z-Wertes. Bei dem hohen internen AKR-Schädigungspotenzial stehen die mechanischen Eigenschaften und der Expansionsraum im Vordergrund; außerdem ist der Einfluss der Zugabe eines LP-Bildners zu analysieren. Um ein hohes internes AKR-Schädigungspotenzial zu erreichen, kommt bei der Herstellung der Betonprobekörper ein Zement mit einem hohen Alkaligehalt zum Einsatz. Die Betonprobekörper werden der 40 °C-Nebelkammerlagerung und dem 60 °C-Betonversuch über Wasser unterzogen. Dabei findet eine neue Prüfmethodologie Anwendung, die der kontinuierlichen Messung der Dehnung und der ablaufenden Erhärtungs- und Rissbildungsprozesse dient. Diese Prüfmethodologie umfasst die Messung der Ultraschallgeschwindigkeit, die Schallemissionsanalyse und die µ-3D-Computertomografie. Hingegen richtet sich der Fokus bei dem hohen externen AKR-Schädigungspotenzial auf die Transportvorgänge. Zur Provokation eines hohen externen AKR-Schädigungspotenzials werden die Probekörper der FIB-Klimawechsellagerung ausgesetzt. N2 - This thesis deals with the question of how the porosity of concrete influences the process of a damaging alkali-silica-reaction (“ASR”). In particular, it is examined whether the use of slip form pavers and the reduced porosity resulting from this use have an effect on the process of a damaging ASR. A reduced porosity leads to a lower ductility of the concrete. Thus it is more difficult for the tensile stress to be reduced. Moreover, the space for the ASR gel to expand is reduced. These consequences promote the ASR. By contrast, the permeability of the concrete is lower. Hence, the penetration of external alkalis is reduced and the diffusion of the alkalis to the potentially reactive aggregate slowed down. An innovative non-destructive testing methodology is applied to answer this question. Based on variations of the porosity it is examined which damage parameters influence the process and intensity of a damaging ASR. The damaging parameters taken into consideration are the mechanical properties of the concrete, the expansion space and the transport processes within the concrete. In order to determine the influence of the relevant damaging parameters two categories of tests are conducted: one category is based on a high internal potential for damages due to ASR, the other one on a high external potential. In both cases alkali-reactive slow/late aggregates are tested. The different porosities of the concrete mainly result from a variation of the w/c-ratio. In case of a high internal potential for ASR-damages the mechanical properties and the expansion space play the most important role. Furthermore; the influence of an air-entraining agent on the process of a damaging ASR is taken into account. The high internal potential for ASR-damages is provoked by the use of cement with a high amount of alkalises for the production of the concrete samples. These samples are stored in the 40 °C fog chamber storage and the 60 °C concrete prisms test. On the one hand the expansion and the change in mass as well as the eigenfrequency are measured discon-tinuously in the conventional way. On the other hand the innovative testing methodology applied to these ASR-provoked stored concrete samples serves to continuously measure the expansion and the hardening as well as crack formation processes. This methodology comprises a determination of the ultrasonic velocity and of acoustic emissions as well as 3-dimensional micro X-ray computed tomography (µ-3D-CT). The high external potential for ASR-damages is provoked by the cyclic climate storage, designed by FIB. The analysis of these concretes focuses on transportation processes. KW - Alkali-Kieselsäure-Reaktion KW - Beton KW - Porosität KW - Auslaugung KW - Natriumchlorid KW - FIB-Klimawechsellagerung KW - 40 °C Nebelkammer KW - 60 °C-Betonversuch über Wasser KW - Schallemissionsanalyse KW - µ-3D Computertomografie Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20160418-25598 ER - TY - THES A1 - Bode, Kay-André T1 - Aspekte der kohäsiven und adhäsiven Eigenschaften von PCC T1 - Aspects of cohesive and adhesive properties of PCC N2 - Die Abkürzung PCC bezieht sie sich hier auf Polymer modified Cement Concrete, also mit Kunststoffen modifizierte Mörtel und Betone. Hierfür hat sich diese Abkürzung auch international durchgesetzt. Sie bezeichnet Baustoffe, die neben dem mineralischen Bindemittel Zement auch Kunststoffe enthalten. Zement und Kunststoff erzielen im späteren Mörtel bzw. Beton eine gemeinschaftliche Bindemittelwirkung. Wiederholter Gegenstand von Schadensfällen ist das Versagen des Haftverbundes zu anderer Bausubstanz. Da PCC häufig als dünne Schutzschicht auf vorhandenen Beton aufgetragen werden, führt ein Versagen der Adhäsion früher oder später auch zu einem Versagen dieser Schutzfunktion. Umgekehrt kann ein Versagen des Schutzes infolge von Rissen im PCC auch im Nachhinein zum Ablösen der Beschichtung führen. Ursächlich für dieses kohäsive Versagen sind dabei i. d. R. die Auswahl falscher bzw. nicht aufeinander abgestimmter Baustoffsysteme oder schlicht Verarbeitungsfehler. Das Ziel dieser Arbeit war es zu untersuchen, welchen Einfluss die kohäsiven und adhäsiven Eigenschaften von PCC auf deren Dauerhaftigkeit, insbesondere bei der Anwendung als Beschichtungsmaterial, haben. Dazu wurden vier maßgebliche Schwerpunkte bearbeitet. Eine zentrale Rolle für die Dauerhaftigkeit eines Beschichtungsmaterials spielt dessen Längenänderungsverhalten. Der Betrag der positiven und negativen Längenänderungen ist bestimmend für die Spannungen, die im Beschichtungsmaterial entstehen können. Sind die auftretenden Spannungen höher als die Zugfestigkeit des PCC erfolgt der Spannungsabbau durch Risse. Es kommt also zum Kohäsionsversagen im Mörtel. Wird der PCC als Beschichtungsmaterial genutzt, werden die Spannungen im Idealfall über die Verbundebene zum Beschichtungsuntergrund übertragen. Übersteigen dabei diese Spannungen die maximal aufnehmbaren Verbundspannungen, kommt es zum Adhäsionsversagen zwischen Beschichtung und Untergrund. In Modellversuchen werden die Effekte des Längenänderungsverhaltens kunststoffmodifizierter Zementsteine auf den Haftverbund zu einer Gesteinskörnung untersucht. Dadurch werden Rückschlüsse auf die Kohäsion innerhalb der PCC durch die Beschreibung des adhäsiven Verbundes zwischen Zementsteinmatrix und Gesteinskörnung gezogen. Neben der Längenänderung sind auch die Festigkeitseigenschaften der PCC bedeutsam für deren Dauerhaftigkeit. Es werden die Festigkeitseigenschaften kunststoffmodifizierter Mörtel und Betone nicht nur von der mechanischen Seite betrachtet. Der Focus liegt vielmehr auf der Beschreibung der durch die Kunststoffe beeinflussten kohäsiven Eigenschaften bei mechanischer Belastung. Es wird das Verhalten der polymeren Matrix nach einer Kurzzeitbelastung untersucht. Damit werden die Vorgänge, die letztlich zu einer Beeinflussung der Festigkeitseigenschaften führen, dargestellt. In diesem Zusammenhang wird auch der Einfluss der Temperatur auf die Festigkeit der PCC betrachtet. Die Untersuchung des Frost-Taumittel-Widerstandes mittels CDF- bzw. CIF-Verfahrens ist eine gute Möglichkeit, neben der Beurteilung der Dauerhaftigkeit auch Rückschlüsse auf die kohäsiven als auch, im mikroskopischen Maßstab betrachtet, die adhäsiven Eigenschaften der PCC zu ziehen. Damit ist gemeint, dass die Kohäsion von PCC durch deren adhäsive Eigenschaften zwischen kunststoffmodifizierter Zementsteinmatrix und Gesteinskörnern maßgeblich bestimmt wird. Einerseits kann bei starkem Abfall des relativen dynamischen E-Moduls von einer geringeren Kohäsion des PCC ausgegangen werden. Dies würde dann bei einem Mörtel eher zu Rissen führen, über die wiederum betonaggressive Medien eindringen können. Im Gegensatz dazu deutet ein konstant bleibender relativer dynamischer E-Modul auf eine hohe Kohäsion und damit, bei Anwendung des PCC als Beschichtungsmaterial, auf ein höheres adhäsives Versagensrisiko der Beschichtung hin. Andererseits stellt eine höhere Abwitterung, also sozusagen das schichtenweise kohäsive Versagen, eine Gefahr bei dünnen Beschichtungen dar. Dies könnte noch durch die Anwendung anderer Taumittel (z. B. organischer) verstärkt werden. Unter diesen Gesichtspunkten wurden Untersuchungen auf der Basis des CDF-Testes sowie zur Lösungsaufnahmefähigkeit der PCC durchgeführt. Der adhäsive Verbund von PCC zu Beton ist von vielen Faktoren abhängig. Bisher kaum betrachtet wurde die Art des Aufbringens oder der Einfluss der Probengeometrie bei Laborversuchen. Diese sowie der Einfluss einer Salzbelastung des Untergrundes bzw. der Beschichtung wurden untersucht. Ein Teil der durchgeführten Untersuchungen wurde im Rahmen des Teilprojektes B3 „Dauerhaftigkeit polymermodifizierter Mörtel und Betone“ des von der DFG geförderten Sonderforschungsbereiches 524 „Werkstoffe und Konstruktionen für die Revitalisierung von Bau-werken“ realisiert. N2 - Polymers were often combined with cementious mixtures to optimise different properties, e. g. the workability, the durability, the mechanical properties or the adhesion to other materials. Often it is unknown how the polymers affect in the PCC-matrix. Especially the reaktions under different stresses and strains are nondistinctive. Main points of the work are the shrinkage of PCC, the influence on the cohesion and adhesion inside of the material and the adhesion to other materials. This points were investigated under other views like durability properties (CDF-test) and mechanical load. The matrix of some polymer modified cement mortars (PCC) will be shown on a couple of SEM-pictures. Afterwards some selective mechanical and durability tests of PCC were introduced. The main properties of the investigated PCC were represented in some diagrams and tables. The stressed matrix will be visualised on SEM-pictures. On these pictures it will be imaginable, how different polymers act in the PCC-matrix. Some parts of the investigations were generated on the subproject B3 "Durability of Polymer modified Cement Concrete (PCC)" on the Collaborated Research Center 524 "Materials and Structures in Revitalisation of Buildings". KW - Betonzusatz KW - Beton KW - Kunstharzmodifizierter Zementbeton KW - Kohäsion KW - Adhäsion KW - Schwinden KW - Elastizitätsmodul KW - Kunststoffmörtel KW - Mörtel KW - Haftverbund KW - CDF-Verfahren KW - Taumittel KW - Mikroskopie KW - Kunststofffilme KW - cohesion KW - adhesion KW - polymer cement concrete KW - shrinkage KW - freeze-thaw-resistance Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20090513-14696 ER - TY - THES A1 - Eckardt, Stefan T1 - Adaptive heterogeneous multiscale models for the nonlinear simulation of concrete N2 - The nonlinear behavior of concrete can be attributed to the propagation of microcracks within the heterogeneous internal material structure. In this thesis, a mesoscale model is developed which allows for the explicit simulation of these microcracks. Consequently, the actual physical phenomena causing the complex nonlinear macroscopic behavior of concrete can be represented using rather simple material formulations. On the mesoscale, the numerical model explicitly resolves the components of the internal material structure. For concrete, a three-phase model consisting of aggregates, mortar matrix and interfacial transition zone is proposed. Based on prescribed grading curves, an efficient algorithm for the generation of three-dimensional aggregate distributions using ellipsoids is presented. In the numerical model, tensile failure of the mortar matrix is described using a continuum damage approach. In order to reduce spurious mesh sensitivities, introduced by the softening behavior of the matrix material, nonlocal integral-type material formulations are applied. The propagation of cracks at the interface between aggregates and mortar matrix is represented in a discrete way using a cohesive crack approach. The iterative solution procedure is stabilized using a new path following constraint within the framework of load-displacement-constraint methods which allows for an efficient representation of snap-back phenomena. In several examples, the influence of the randomly generated heterogeneous material structure on the stochastic scatter of the results is analyzed. Furthermore, the ability of mesoscale models to represent size effects is investigated. Mesoscale simulations require the discretization of the internal material structure. Compared to simulations on the macroscale, the numerical effort and the memory demand increases dramatically. Due to the complexity of the numerical model, mesoscale simulations are, in general, limited to small specimens. In this thesis, an adaptive heterogeneous multiscale approach is presented which allows for the incorporation of mesoscale models within nonlinear simulations of concrete structures. In heterogeneous multiscale models, only critical regions, i.e. regions in which damage develops, are resolved on the mesoscale, whereas undamaged or sparsely damage regions are modeled on the macroscale. A crucial point in simulations with heterogeneous multiscale models is the coupling of sub-domains discretized on different length scales. The sub-domains differ not only in the size of the finite elements but also in the constitutive description. In this thesis, different methods for the coupling of non-matching discretizations - constraint equations, the mortar method and the arlequin method - are investigated and the application to heterogeneous multiscale models is presented. Another important point is the detection of critical regions. An adaptive solution procedure allowing the transfer of macroscale sub-domains to the mesoscale is proposed. In this context, several indicators which trigger the model adaptation are introduced. Finally, the application of the proposed adaptive heterogeneous multiscale approach in nonlinear simulations of concrete structures is presented. N2 - Das nichtlineare Materialverhalten von Beton ist durch die Entwicklung von Mikrorissen innerhalb der heterogenen Materialstruktur gekennzeichnet. In dieser Arbeit wird ein Mesoskalenmodell entwickelt, welches die einzelnen Bestandteile der Materialstruktur explizit auflöst und somit die Simulation dieser Mikrorisse erlaubt. Dadurch können die wirklichen physikalischen Vorgänge, welche das komplexe nichtlineare Verhalten von Beton verursachen, durch relativ einfache Materialformulierungen abgebildet werden. Für Beton wird auf der Mesoskala ein 3-Phasenmodell vorgeschlagen, bestehend aus groben Zuschlägen, Mörtelmatrix und Übergangszone zwischen Zuschlag und Matrix. In diesem Zusammenhang wird ein effizienter Algorithmus vorgestellt, welcher ausgehend von einer gegebenen Sieblinie dreidimensionale Kornstrukturen mittels Ellipsoiden simuliert. Im Mesoskalenmodell wird das Zugversagen der Mörtelmatrix durch einen Kontinuumsansatz beschrieben. Um Netzabhängigkeiten, welche durch das Entfestigungsverhalten des Materials hervorgerufen werden, zu reduzieren, kommen nichtlokale Materialformulierungen zum Einsatz. Risse innerhalb der Übergangszone zwischen Zuschlag und Matrix werden, basierend auf einem kohäsiven Modell, mittels eines diskreten Rissansatzes abgebildet. Die Verwendung einer neuen Nebenbedingung innerhalb der Last-Verschiebungs-Zwangsmethode führt zu einer Stabilisierung des iterativen Lösungverfahrens, so dass eine effiziente Simulation von Snap-back Phänomenen möglich wird. Anhand von Beispielen wird gezeigt, dass Mesoskalenmodelle die stochastische Streuung von Ergebnissen und Maßstabseffekte abbilden können. Da auf der Mesoskala die Diskretisierung der inneren Materialstruktur erforderlich ist, steigt im Vergleich zu Simulationen auf der Makroskala der numerische Aufwand erheblich. Aufgrund der Komplexität des numerischen Modells sind Mesoskalensimulationen in der Regel auf kleine Probekörper beschränkt. In dieser Arbeit wird ein adaptiver heterogener Mehrskalenansatz vorgestellt, welcher die Verwendung von Mesoskalenmodellen in nichtlinearen Simulationen von Betonstrukturen erlaubt. In heterogenen Mehrskalenmodellen werden nur kritische Bereiche auf der Mesoskala aufgelöst, während ungeschädigte Bereiche auf der Makroskala abgebildet werden. Ein wichtiger Aspekt in Simulationen mit heterogenen Mehrskalenmodellen ist die Kopplung der auf unterschiedlichen Längenskalen diskretisierten Teilgebiete. Diese unterscheiden sich nicht nur in der Größe der finiten Elemente sondern auch in der Beschreibung des Materials. Verschiedene Methoden zur Kopplung nicht übereinstimmender Vernetzungen - Kopplungsgleichungen, die Mortar-Methode und die Arlequin-Methode - werden untersucht und ihre Anwendung in heterogenen Mehrskalenmodellen wird gezeigt. Ein weiterer wichtiger Aspekt ist die Bestimmung kritischer Regionen. Eine adaptive Lösungsstrategie wird entwickelt, welche die Umwandlung von Makroskalengebieten auf die Mesoskala erlaubt. In diesem Zusammenhang werden Indikatoren vorgestellt, die eine Modellanpassung auslösen. Anhand nichtlinearer Simulationen von Betonstrukturen wird die Anwendung des vorgestellten adaptiven heterogenen Mehrskalenansatzes demonstriert. T2 - Adaptive heterogene Mehrskalenmodelle zur nichtlinearen Simulation von Beton T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2010,1 KW - Beton KW - Mehrskalenanalyse KW - Finite-Elemente-Methode KW - Nichtlineare Finite-Elemente-Methode KW - Schadensmechanik KW - Mehrskalenmodell KW - Adaptives Verfahren KW - concrete KW - multiscale method KW - finite element method KW - continuum damage mechanics KW - adaptive simulation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20100317-15023 ER - TY - THES A1 - Unger, Jörg F. T1 - Neural networks in a multiscale approach for concrete N2 - From a macroscopic point of view, failure within concrete structures is characterized by the initiation and propagation of cracks. In the first part of the thesis, a methodology for macroscopic crack growth simulations for concrete structures using a cohesive discrete crack approach based on the extended finite element method is introduced. Particular attention is turned to the investigation of criteria for crack initiation and crack growth. A drawback of the macroscopic simulation is that the real physical phenomena leading to the nonlinear behavior are only modeled phenomenologically. For concrete, the nonlinear behavior is characterized by the initiation of microcracks which coalesce into macroscopic cracks. In order to obtain a higher resolution of this failure zones, a mesoscale model for concrete is developed that models particles, mortar matrix and the interfacial transition zone (ITZ) explicitly. The essential features are a representation of particles using a prescribed grading curve, a material formulation based on a cohesive approach for the ITZ and a combined model with damage and plasticity for the mortar matrix. Compared to numerical simulations, the response of real structures exhibits a stochastic scatter. This is e.g. due to the intrinsic heterogeneities of the structure. For mesoscale models, these intrinsic heterogeneities are simulated by using a random distribution of particles and by a simulation of spatially variable material parameters using random fields. There are two major problems related to numerical simulations on the mesoscale. First of all, the material parameters for the constitutive description of the materials are often difficult to measure directly. In order to estimate material parameters from macroscopic experiments, a parameter identification procedure based on Bayesian neural networks is developed which is universally applicable to any parameter identification problem in numerical simulations based on experimental results. This approach offers information about the most probable set of material parameters based on experimental data and information about the accuracy of the estimate. Consequently, this approach can be used a priori to determine a set of experiments to be carried out in order to fit the parameters of a numerical model to experimental data. The second problem is the computational effort required for mesoscale simulations of a full macroscopic structure. For this purpose, a coupling between mesoscale and macroscale model is developed. Representative mesoscale simulations are used to train a metamodel that is finally used as a constitutive model in a macroscopic simulation. Special focus is placed on the ability of appropriately simulating unloading. N2 - Makroskopisch betrachtet kann das Versagen von Beton durch die Entstehung und das Wachstum von Rissen beschrieben werden. Im ersten Teil der Arbeit wird eine Methode zur Simulation der makroskopischen Rissentwicklung von Beton unter Verwendung von kohäsiven diskreten Rissen basierend auf der erweiterten Finiten Elemente Methode vorgestellt. Besondere Bedeutung liegt dabei auf der Untersuchung von Kriterien zur Rissentstehung und zum Risswachstum. Ein Nachteil von makroskopischen Simulationen liegt in der nur phänomenologischen Berücksichtigung der tatsächlichen Vorgänge. Nichtlineares Verhalten von Beton ist durch die Entstehung von Mikrorissen gekennzeichnet, die bei weiterer Belastung zu makroskopischen Rissen zusammenwachsen. Um die Versagenszone realitätsnah abbilden zu können, wurde ein Mesoskalenmodell von Beton entwickelt, welches Zuschläge, Matrix und Übergangszone zwischen beiden Materialien (ITZ) direkt abbildet. Hauptmerkmal sind die Simulation der Zuschläge nach einer Sieblinie, eine kohäsive Materialformulierung der ITZ und ein kombiniertes Model aus Schädigung und Plastizität für das Matrixmaterial. Im Gegensatz zu numerischen Simulationen ist die Systemantwort reeller Strukturen eine unscharfe Größe. Dies liegt u.a. an Heterogenitäten innerhalb der Struktur, die im Rahmen der Arbeit durch eine zufällige Verteilung der Zuschläge und über räumlich variierende Materialparameter unter Verwendung von Zufallsfeldern simuliert werden. Zwei Hauptprobleme sind bei den Mesoskalensimulationen aufgetreten. Einerseits sind Materialparameter auf der Mesoskala oft schwer zu bestimmen. Deswegen wurde eine Methode basierend auf Bayes neuronalen Netzen entwickelt, die eine Parameteridentifikation unter Verwendung von makroskopischen Versuchen erlaubt. Diese Methode ist aber universell anwendbar auf alle Parameteridentifikationsprobleme in numerischen Simulationen basierend auf experimentellen Daten. Der Ansatz liefert sowohl Informationen über den wahrscheinlichsten Parametersatz des Models zur numerischen Simulation eines Experiments als auch eine Einschätzung der Genauigkeit dieses Schätzers. Die Methode kann auch verwendet werden, um a priori einen Satz von Experimenten auszuwählen der notwendig ist, um die Parameter eines numerischen Modells zu bestimmen. Ein zweites Problem ist der numerische Aufwand von Mesoskalensimulationen für makroskopische Strukturen. Aus diesem Grund wurde eine Kopplungsstrategie zwischen Meso- und Makromodell entwickelt, bei dem repräsentative Simulationen auf der Mesoebene verwendet werden, um ein Metamodell zu generieren, welches dann die Materialformulierung in einer makroskopischen Simulation darstellt. Ein Fokus liegt dabei auf der korrekten Abbildung von Entlastungen. T2 - Neuronale Netze in einem Multiskalenansatz für Beton T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2009,1 KW - Beton KW - Mehrskalenmodell KW - Mehrskalenanalyse KW - Neuronales Netz KW - Monte-Carlo-Simulation KW - Simulation KW - Monte-Carlo-Integration KW - Kontinuierliche Simul KW - Bayes neuronale Netze KW - Parameteridentification KW - Bayesian neural networks KW - parameter identification Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20090626-14763 ER - TY - THES A1 - Tartsch, Enrico T1 - Bewertung der Dauerstandfestigkeit von dampfgehärtetem Porenbeton auf der Grundlage von Kurzzeitversuchen T1 - Prediction of the Sustained Load Strength of Autoclaved Aerated Concrete on a Short-term Basis N2 - Im Rahmen der Arbeit wird das Tragverhalten von dampfgehärtetem Porenbeton unter einachsiger Druckbeanspruchung untersucht. Ziel ist es, einen Zusammenhang zwischen makroskopischen Spannungs-Dehnungs-Beziehungen, beanspruchungsbedingten Strukturänderungen und der Dauerstandfestigkeit herzustellen. Die Dauerstandfestigkeit stellt im Sinne der Arbeit eine elementare Gefügeschwelle dar, durch sie wird das stabile vom instabilen Tragverhalten abgegrenzt. Der Zusammenhang zwischen Strukturänderungen und Spannungs-Dehnungs-Verhalten wird anhand mechanischer Modelle analysiert. Diese Untersuchungen liefern die konzeptionelle Orientierung für die durchzuführenden Laborversuche. Die experimentelle Basis der Arbeit bilden Kurzzeit- und Langzeitversuche an Porenbetonzylindern unter einachsiger Druckbeanspruchung. Es werden Probekörper von drei Porenbetonwerken untersucht. Um den Einfluss der Lastgeschichte aufzuzeigen, wird die Versuchsdauer zwischen einer Sekunde und mehreren Wochen variiert. Die Versuche werden mit unterschiedlichen Lastregimen durchgeführt: sowohl mit monoton gesteigerter Beanspruchung bis zum Versagen bzw. bis zum vorgesehenen Beanspruchungsniveau als auch mit niederzyklischer Beanspruchung. Die Messdaten werden unter Einbeziehung der dreidimensionalen Ansätze der Spannungs- und Deformationstheorie hinsichtlich des sphärischen und des deviatorischen Anteils des Spannungs- und Verformungszustandes ausgewertet. Diese auf die separate Betrachtung der Volumen- und Gestaltänderung gestützte Auswertung liefert zusätzliche Erkenntnisse hinsichtlich der Zuordnung von reversiblen und irreversiblen Verformungen zu den Teiltensoräquivalenten. Entsprechend den Versuchsergebnissen ändert sich die Kompressibilität des Porenbetons belastungsabhängig. Bereits kurzzeitige Überlastungen oberhalb der experimentell ermittelten Dauerstandgrenze sind von signifikanten Änderungen der Kompressionssteifigkeit begleitet. Das qualitative Tragverhalten des Porenbetons, das bei Beanspruchungen oberhalb der Dauerstandfestigkeit grundsätzliche Änderungen erfährt, lässt sich so bereits im Kurzzeitversuch abgrenzen. Zusätzliche Auswertungen für Normalbeton und selbstverdichtenden hochfesten Beton weisen auf analoges Verhalten hin. Auf der Basis der durchgeführten Untersuchungen werden Konzepte vorgestellt, mit denen die Dauerstandfestigkeit im Kurzzeitversuch, das heißt mit einer Versuchsdauer von wenigen Stunden, prognostiziert werden kann. Damit können Untersuchungen zur Dauerstandfestigkeit, die eine grundlegende Größe zur Beurteilung der Tragfähigkeit darstellt, routinemäßig durchgeführt werden. N2 - This thesis is concerned with the behaviour of autoclaved aerated concrete (AAC) when it is subjected to uniaxial compressive loads. The objective is to ascertain the relationship between textural changes, macroscopic stress-strain relations and the sustained load strength of the material itself. Throughout the thesis, the sustained load strength is considered as a basic threshold level, i.e. as the boundary between stable and unstable load-bearing behaviour. First, the effect of textural changes on the stress-strain behaviour was analysed on a theoretical basis with the aid of mechanical models. Based on the results, experimental tests were then planned. Short-term as well as long-term tests were carried out using cylindrical specimens made of AAC. Three different types of AAC were tested. Different load histories were used: monotonically increased loads and low-cycle loads with the load level increased step by step. Within the context of the test data analysis, three-dimensional textural responses are taken into account. Uniaxial loading is regarded as a special case of multi-axial loading. The decomposition of the stress tensor and strain tensor respectively opens up the opportunity to obtain more detailed information about elastic and inelastic material properties. It can be shown that compressibility of AAC undergoes load-dependent changes. Even short-term overloads lead to significant textural changes; these can be detected by analysing the bulk modulus. On this basis, it is possible to give clear statements about the sustained load strength of AAC. Additional tests carried out on normal-strength concrete and self-compacting concrete display similar behaviour. This study outlines a way of predicting sustained load strength on a short-term basis. As a result, it will be possible to carry out routine investigations into the sustained load strength in the future. T3 - Schriftenreihe des Instituts für Konstruktiven Ingenieurbau - 12 KW - Porenbeton KW - Beton KW - Tragverhalten KW - Dauerstandfestigkeit KW - Bruchverhalten KW - Experiment KW - Deformationsverhalten KW - zyklisch KW - Strukturänderung KW - elastische Eigenschaften KW - sphärisch KW - deviatorisch KW - Kompressibilität KW - textural changes KW - elastic properties KW - spherical KW - deviatoric KW - compressibility Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20080213-12926 ER - TY - THES A1 - Mansfeld, Thomas T1 - Das Quellverhalten von Alkalisilikatgelen unter Beachtung ihrer Zusammensetzung T1 - The swelling behaviour of alkali silicate gels considering their composition N2 - Im Rahmen dieser Arbeit wurden über verschiedene Herstellungsverfahren 48 Gelproben erzeugt und auf ihr Quellverhalten untersucht. Dabei wurde eine Wiederholbarkeit der Messungen mit anderen Bearbeitern überprüft und nachgewiesen. Es zeigt sich in den Quellversuchen, dass hohe Alkaligehalte in den Gelproben bei einer niedrigen Löslichkeit (durch geringe Mengen Calcium in der Probe hervorgerufen) hohe Quelldrücke erzeugen. Ein Einfluss des Natrium-Kalium-Verhältnisses (Alkaliverhältnis) auf das Quellverhalten der Gelproben ist nicht zu erkennen. Der Einfluss des Calciums im Gel zeichnet sich deutlich ab, ohne Calcium bauen die Proben keine Quelldrücke auf, bei zu hohen Calciumgehalten entstehen nicht quellfähige Alkali-Calcium-Silikat-Hydrate. Ein quellfähiger Bereich kann von ca. 5 % bis zu ca. 30 % Calciumanteil im Gel angegeben werden. Neben dem Einfluss des Calciumgehaltes auf das Quellverhalten der Gele ist auch ein Einfluss des Alkali-Silika-Verhältnisses in den Proben nachweisbar. Wird dieses Verhältnis in den Proben stark Richtung Kieselsäure verschoben, d. h. niedrige Alkalianteile im Gel, kommt es zu keinen Quellerscheinungen. Somit kann die Wirkung von AKR-vermeidenden Zusätzen (FA, Silika usw.) mit diesen Messungen bestätigt werden. Es kann gezeigt werden, dass die ermittelten Quelldrücke eines Alkalikiesel-Gels ein Gesteinskorn oder/und die umgebende Matrix zerstören können. Aus diesen oben genannten Erkenntnissen wird ein Bereich einer quellfähigen Zusammensetzung eines Gels in einem Dreistoffdiagramm angegeben und es können folgende Schlussfolgerungen gezogen werden: •Ein Quelldruck kann in einem AK-Gel nur bei einer bestimmten Menge an eingebautem Calcium aufgebaut werden. •Diese Quelldrücke können deutlich Werte über 10 N/mm² erreichen. •Die im Beton verwendeten Gesteinskörnungen und auch die sie umschließende Mörtelmatrix können mit Quelldrücken in den hier bestimmten Größenordnungen zerstört werden. •Die bekannten Modelle zur Alkali-Kieselsäure-Reaktion müssen um den Einbau des Calciums in ein entstandenes AK-Gel erweitert werden. N2 - In the context of this work over different manufacturing processes 48 gel samples were produced and examined for their swelling behaviour. A repeatability of the measurements with other editors was examined and proven. It shows up in the swelling tests that high alkali contents in the gel samples produce high swelling pressures. An influence of the sodium potassium relationship (alkali relationship) on the swelling behaviour of the gel samples is not to be recognized. The influence of the calcium in the gel appears clearly, without calcium develops the samples no swelling pressures, with to high calcium contents develops not swelling alkali calcium silicate hydrates. A swelling range can be indicated from approx 5% to approx 30% calcium content in the gel. Apart from the influence of the calcium content on the swelling behaviour of the gels also an influence of the alkali Silika relationship is in the samples provable. If this relationship in the samples is shifted strongly direction silicic acid, i.e. low alkali portions in the gel, it comes to no swelling pressure. Thus the effect of ASR avoiding additives (fly asch, silica etc.) with these measurements can be confirmed. It can be shown that the determined swelling pressures of an alkali silicate gel can destroy a rock grain and/or the surrounding matrix. From these realizations specified above a range of a pourable composition of a gel will be able to do it indicated in a three material diagram and the following conclusions to be pulled: •A swelling pressure can be developed in a alkali silcate gel only with a certain quantity of inserted calcium. •These swelling pressures can reach values over 10 N/mm². •The rock granulations used in the concrete and also the mortar matrix enclosing them can be destroyed with swelling pressures in the orders of magnitude determined here. •The well-known models for alkali silicic acid reaction must be extended by the installation of the calcium into a developed Alkali silcate gel. KW - Alkalilösliche Kieselsäure KW - Beton KW - Quellen KW - Quelldruck KW - Alkali-Kieselsäure-Reaktion KW - Alkali-Kieselsäure-Gel KW - alkali silicate gels KW - swelling KW - alkali silicate reaction Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20090106-14572 ER - TY - THES A1 - Heidolf, Thorsten T1 - Zeit- und beanspruchungsabhängiges Tragverhalten von polymermodifiziertem Beton unter mehrfach wiederholter Beanspruchung T1 - Time- and Strain-Dependent Behaviour of Polymer-Modified Concrete with Multifariously Repeated Load N2 - In der vorliegenden Arbeit werden die experimentellen Ergebnisse eigener Untersuchungen an unbewehrtem und bewehrtem polymermodifiziertem Beton unter mehrfach wiederholter Druck- und Zugbeanspruchung vorgestellt und mit den Ergebnissen ähnlicher Versuche an Normalbeton und hochfestem Beton verglichen. Besondere Aufmerksamkeit wird dabei dem Formänderungsverhalten, der Steifigkeitsdegradation und der Energiedissipation sowie dem Kriechverhalten und der Mitwirkung des Betons zwischen den Rissen gewidmet. Die beobachtete signifikante Steifigkeitsdegradation sowie der ausgeprägt nichtlineare Zusammenhang zwischen der viskosen Verformung und der elastischen Stauchung zeigen, dass bei der Analyse der Kriech¬aus¬wirkungen des polymermodifizierten Betons auf das Tragverhalten entsprechender Kon¬struktionen neben den Gebrauchslasten auch die während der Lastgeschichte aufgetretenen maximalen Beanspruchungssituationen sowie die damit verbundenen Strukturveränderungen zu berücksichtigen sind. Auf der Basis der Versuchsergebnisse und der visko-elastisch-plastischen Kontinuumsschädigungstheorie werden rheologische Modelle zur Beschreibung des zeit- und beanspruchungsabhängigen Tragverhaltens von Betonbauteile vorgeschlagen. Die numerische Umsetzung der vorgeschlagenen Modelle erfolgt unter Berücksichtigung des zeitabhängigen Materialverhaltens des Betons auf der Basis des HAMILTON-Prinzips unter Vernachlässigung der Trägheitskräfte. Durch eine zeitliche Diskretisierung kann die Problembeschreibung auf das Prinzip von LAGRANGE vom Minimum des Gesamtpotentials zurückgeführt und als nichtlineare Optimierungsaufgabe formuliert werden. Die Simulation des beanspruchungsabhängigen Tragverhaltens von Stahlbetonverbundquerschnitten verdeutlicht die Qualität und Leistungsfähigkeit der vorgeschlagenen Modellbildung. N2 - The experimental results of the investigations into polymer-modified concrete with multifariously repeated compression or tension load are introduced in the provided work and compared to similar experiments in normal- and high-strength concrete. Special attention is dedicated to the stress-strain relation, the degradation of stiffness and the dissipation of energy as well as the non-linear long-term behaviour and tension-stiffening. Stiffness degradation and non-linear creep of polymer-modified concrete show that maximum strain situations have to be taken into consideration of the behaviour analysis of concrete structures under long-term loading. Based on experimental results and the theory of visco-elastic-plastic continuum damage, rheological models are suggested for the description of the time- and damage-dependent behaviour of reinforced concrete. The numerical concept is based on the HAMILTON-principle. Using time discretisation, mechanical modelling simplifies and can be described as a LAGRANGE-principle concerning minimum of total potential energy. The problem is solved by non-linear optimisation. The efficiency of the suggested model was proven for reinforced concrete cross sections by numerical simulation. T3 - Schriftenreihe des Instituts für Konstruktiven Ingenieurbau - 10 KW - Kriechen KW - Kunstharzmodifizierter Zementbeton KW - Beton KW - Tragverhalten KW - Bruchverhalten KW - Experiment KW - Deformationsverhalten KW - Stoffgesetz KW - nichtlineare Optimierung KW - Simulation KW - Formänderungsenergie KW - Steifigkeitsdegradation KW - Creep KW - damage KW - tension-stiffening KW - dissipation of energy KW - non-linear optimisation Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20080102-11753 SN - 978-3-86068-331-2 ER - TY - THES A1 - Kurukuri, Srihari T1 - Homogenization of Damaged Concrete Mesostructures using Representative Volume Elements - Implementation and Application to SLang N2 - This master thesis explores an important and under-researched topic on the so-called bridging of length scales (from >meso< to >macro<), with the concept of homogenization in which the careful characterization of mechanical response requires that the developed material model >bridge< the representations of events that occur at two different scales. The underlying objective here is to efficiently incorporate material length scales in the classical continuum plasticity/damage theories through the concept of homogenization theory. The present thesis is devoted to computational modeling of heterogeneous materials, primarily to matrix-inclusion type of materials. Considerations are focused predominantly on the elastic and damage behavior as a response to quasistatic mechanical loading. Mainly this thesis focuses to elaborate a sound numerical homogenization model which accounts for the prediction of overall properties with the application of different types of boundary conditions namely: periodic, homogeneous and mixed type of boundary conditions over two-dimensional periodic and non-periodic RVEs and three-dimensional non-periodic RVEs. Identification of the governing mechanisms and assessing their effect on the material behavior leads one step further. Bringing together this knowledge with service requirements allows for functional oriented materials design. First, this thesis gives attention on providing the theoretical basic mechanisms involved in homogenization techniques and a survey will be made on existing analytical methods available in literature. Second, the proposed frameworks are implemented in the well known finite element software programs ANSYS and SLang. Simple and efficient algorithms in FORTRAN are developed for automated microstructure generation using RSA algorithm in order to perform a systematic numerical testing of microstructures of composites. Algorithms are developed to generate constraint equations in periodic boundary conditions and different displacements applied spatially over the boundaries of the RVE in homogeneous boundary conditions. Finally, nonlinear simulations are performed at mesolevel, by considering continuum scalar damage behavior of matrix material with the linear elastic behavior of aggregates with the assumption of rigid bond between constituents. KW - Schadensmechanik KW - Finite-Elemente-Methode KW - Beton KW - Homogenisierung KW - Repräsentative Volumen Elemente KW - Mesoskala KW - Homogenization KW - Representative Volume Elements KW - Mesoscale Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-6670 N1 - Der Volltext-Zugang wurde im Zusammenhang mit der Klärung urheberrechtlicher Fragen mit sofortiger Wirkung gesperrt. ER -