TY - THES A1 - Kulik, Alexander T1 - User Interfaces for Cooperation N2 - This thesis suggests cooperation as a design paradigm for human-computer interaction. The basic idea is that the synergistic co-operation of interfaces through concurrent user activities enables increased interaction fluency and expressiveness. This applies to bimanual interaction and multi-finger input, e.g., touch typing, as well as the collaboration of multiple users. Cooperative user interfaces offer more interaction flexibility and expressivity for single and multiple users. Part I of this thesis analyzes the state of the art in user interface design. It explores limitations of common approaches and reveals the crucial role of cooperative action in several established user interfaces and research prototypes. A review of related research in psychology and human-computer interaction offers insights to the cognitive, behavioral, and ergonomic foundations of cooperative user interfaces. Moreover, this thesis suggests a broad applicability of generic cooperation patterns and contributes three high-level design principles. Part II presents three experiments towards cooperative user interfaces in detail. A study on desktop-based 3D input devices, explores fundamental benefits of cooperative bimanual input and the impact of interface design on bimanual cooperative behavior. A novel interaction technique for multitouch devices is presented that follows the paradigm of cooperative user interfaces and demonstrates advantages over the status quo. Finally, this thesis introduces a fundamentally new display technology that provides up to six users with their individual perspectives of a shared 3D environment. The system creates new possibilities for the cooperative interaction of multiple users. Part III of this thesis builds on the research results described in Part II, in particular, the multi-user 3D display system. A series of case studies in the field of collaborative virtual reality provides exemplary evidence for the relevance and applicability of the suggested design principles. N2 - Die vorliegende Arbeit betrachtet Kooperation als Gestaltungsparadigma für Mensch-Maschine Schnittstellen. Dabei geht es um Kooperation im Sinne paralleler Aktivitäten und deren synergetischer Kombination mit dem Ziel einer flüssigen und effektiven Computerarbeit. Dieses Interaktionsmuster ist für zweihändige Eingaben und die Nutzung mehrerer Finger, z.B. beim Maschinenschreiben, genauso anwendbar wie für die Zusammenarbeit mehrerer Nutzer. Kooperative Benutzungsschnittstellen bieten Einzelpersonen sowie Gruppen von Nutzern mehr Flexibilität und Ausdrucksmöglichkeiten. Teil I dieser Arbeit betrachtet den Stand von Forschung und Technik zu diesem Thema. Dabei werden Limitierungen etablierter Benutzungsschnittstellen untersucht als auch das Potential und die Bedeutung kooperativer Interaktion. Auf Grundlage von Forschungsergebnissen aus der Psychologie, den Bewegungswissenschaften und der Forschung zu Mensch-Maschine Schnittstellen werden kognitive und ergonomische Grundlagen kooperativer Benutzungsschnittstellen abgeleitet. Darüber hinaus werden generische Kooperationsmuster diskutiert und die Anforderungen an kooperative Benutzungsschnittstellen in drei Gestaltungsprinzipien zusammengefasst. Teil II dieser Arbeit stellt drei Forschungsarbeiten zur Entwicklung und Untersuchung kooperativer Benutzungsschnittstellen vor. In Kapitel 8 wird zweihändige Kooperation am Beispiel tischbasierter 3D Eingabegeräte untersucht. Kapitel 9 stellt eine neue Multitouch Interaktionstechnik vor, die dem Paradigma kooperativer Benutzungsschnittstellen folgt und klare Vorteile gegenüber einer etablierten Technik aufweist. Kapitel 10 präsentiert die Entwicklung und Untersuchung einer neuen 3D Projektionstechnologie, die bis zu sechs Personen individuelle Perspektiven auf eine gemeinsame virtuelle Umgebung bietet. Daraus ergeben sich völlig neue Möglichkeiten für die kooperative Interaktion mehrerer Nutzer mit dreidimensionalen Daten. Teil III dieser Arbeit baut auf den Ergebnissen der in Teil II beschriebenen Experimente auf. Fallstudien aus dem Bereich der virtuellen Realität für mehrere Nutzer, belegen die Relevanz und Anwendbarkeit der vorgeschlagenen Gestaltungsprinzipien KW - Human-Computer Interaction (HCI) KW - Mensch-Maschine-Interaktion (MMI) KW - Kollaborative Arbeit KW - User Interfaces and Interaction Techniques KW - Computer Supported Collaborative Work KW - Bimanual Interaction KW - 3D User Interfaces and Interaction Techniques KW - Display Technoloy, Collaboration, Virtual Reality Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20161202-27207 ER - TY - THES A1 - Moehring, Mathias T1 - Realistic Interaction with Virtual Objects within Arm's Reach N2 - The automotive industry requires realistic virtual reality applications more than other domains to increase the efficiency of product development. Currently, the visual quality of virtual invironments resembles reality, but interaction within these environments is usually far from what is known in everyday life. Several realistic research approaches exist, however they are still not all-encompassing enough to be usable in industrial processes. This thesis realizes lifelike direct multi-hand and multi-finger interaction with arbitrary objects, and proposes algorithmic and technical improvements that also approach lifelike usability. In addition, the thesis proposes methods to measure the effectiveness and usability of such interaction techniques as well as discusses different types of grasping feedback that support the user during interaction. Realistic and reliable interaction is reached through the combination of robust grasping heuristics and plausible pseudophysical object reactions. The easy-to-compute grasping rules use the objects’ surface normals, and mimic human grasping behavior. The novel concept of Normal Proxies increases grasping stability and diminishes challenges induced by adverse normals. The intricate act of picking-up thin and tiny objects remains challenging for some users. These cases are further supported by the consideration of finger pinches, which are measured with a specialized finger tracking device. With regard to typical object constraints, realistic object motion is geometrically calculated as a plausible reaction on user input. The resulting direct finger-based interaction technique enables realistic and intuitive manipulation of arbitrary objects. The thesis proposes two methods that prove and compare effectiveness and usability. An expert review indicates that experienced users quickly familiarize themselves with the technique. A quantitative and qualitative user study shows that direct finger-based interaction is preferred over indirect interaction in the context of functional car assessments. While controller-based interaction is more robust, the direct finger-based interaction provides greater realism, and becomes nearly as reliable when the pinch-sensitive mechanism is used. At present, the haptic channel is not used in industrial virtual reality applications. That is why it can be used for grasping feedback which improves the users’ understanding of the grasping situation. This thesis realizes a novel pressure-based tactile feedback at the fingertips. As an alternative, vibro-tactile feedback at the same location is realized as well as visual feedback by the coloring of grasp-involved finger segments. The feedback approaches are also compared within the user study, which reveals that grasping feedback is a requirement to judge grasp status and that tactile feedback improves interaction independent of the used display system. The considerably stronger vibrational tactile feedback can quickly become annoying during interaction. The interaction improvements and hardware enhancements make it possible to interact with virtual objects in a realistic and reliable manner. By addressing realism and reliability, this thesis paves the way for the virtual evaluation of human-object interaction, which is necessary for a broader application of virtual environments in the automotive industry and other domains. N2 - Stärker als andere Branchen benötigt die Automobilindustrie realistische Virtual Reality Anwendungen für eine effiziente Produktentwicklung. Während sich die visuelle Qualität virtueller Darstellungen bereits der Realität angenähert hat, ist die Interaktion mit virtuellen Umgebungen noch weit vom täglichen Erleben der Menschen entfernt. Einige Forschungsansätze haben sich mit realistischer Interaktion befasst, gehen aber nicht weit genug, um in industriellen Prozessen eingesetzt zu werden. Diese Arbeit realisiert eine lebensnahe mehrhändige und fingerbasierte Interaktion mit beliebigen Objekten. Dabei ermöglichen algorithmische und technische Verbesserungen eine realitätsnahe Usability. Außerdem werden Methoden für die Evaluation dieser Interaktionstechnik vorgestellt und benutzerunterstützende Greiffeedbackarten diskutiert. Die verlässliche und gleichzeitig realistische Interaktion wird durch die Kombination von robusten Greifheuristiken und pseudophysikalischen Objektreaktionen erreicht. Die das menschliche Greifverhalten nachbildenden Greifregeln basieren auf den Oberflächennormalen der Objekte. Die Reduktion negativer Einflüsse verfälschter Normalen und eine höhere Griffstabilität werden durch das neuartige Konzept der Normal Proxies erreicht. Dennoch bleibt für manche Nutzer das Aufnehmen von dünnen und kleinen Objekten problematisch. Diese Fälle werden zusätzlich durch die Einbeziehung von Fingerberührungen unterstützt, die mit einem speziellen Fingertracking Gerät erfasst werden. Plausible Objektreaktionen auf Benutzereingaben werden unter Berücksichtigung typischer Objekteinschränkungen geometrisch berechnet. Die Arbeit schlägt zwei Methoden zur Evaluierung der fingerbasierten Interaktion vor. Ein Expertenreview zeigt, dass sich erfahrene Benutzer sehr schnell in die Technik einfinden. In einer Benutzerstudie wird nachgewiesen, dass fingerbasierte Interaktion im hier untersuchten Kontext vor indirekter Interaktion mit einem Eingabegerät bevorzugt wird. Während letztere robuster zu handhaben ist, stellt die fingerbasierte Interaktion einen deutlich höheren Realismus bereit und erreicht mit den vorgeschlagenen Verbesserungen eine vergleichbare Verlässlichkeit. Um Greifsituationen transparent zu gestalten, realisiert diese Arbeit ein neuartiges druckbasiertes taktiles Feedback an den Fingerspitzen. Alternativ wird ein vibrotaktiles Feedback am gleichen Ort realisiert und visuelles Feedback durch die Einfärbung der griffbeteiligten Fingersegmente umgesetzt. Die verschiedenen Feedbackansätze werden in der Benutzerstudie verglichen. Dabei wird Greiffeedback als Voraussetzung identifiziert, um den Greifzustand zu beurteilen. Taktiles Feedback verbessert dabei die Interaktion unabhängig vom eingesetzten Display. Das merklich stärkere Vibrationsfeedback kann während der Interaktion störend wirken. Die vorgestellten Interaktionsverbesserungen und Hardwareerweiterungen ermöglichen es, mit virtuellen Objekten auf realistische und zuverlässige Art zu interagieren. Indem die Arbeit Realismus und Verlässlichkeit gleichzeitig adressiert, bereitet sie den Boden für die virtuelle Untersuchung von Mensch-Objekt Interaktionen und ermöglicht so einen breiteren Einsatz virtueller Techniken in der Automobilindustrie und in anderen Bereichen. KW - Virtuelle Realität KW - Interaktion KW - Mensch-Maschine-Interaktion KW - Medieninformatik Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130301-18592 ER - TY - THES A1 - Lux, Christopher T1 - A Data-Virtualization System for Large Model Visualization N2 - Interactive scientific visualizations are widely used for the visual exploration and examination of physical data resulting from measurements or simulations. Driven by technical advancements of data acquisition and simulation technologies, especially in the geo-scientific domain, large amounts of highly detailed subsurface data are generated. The oil and gas industry is particularly pushing such developments as hydrocarbon reservoirs are increasingly difficult to discover and exploit. Suitable visualization techniques are vital for the discovery of the reservoirs as well as their development and production. However, the ever-growing scale and complexity of geo-scientific data sets result in an expanding disparity between the size of the data and the capabilities of current computer systems with regard to limited memory and computing resources. In this thesis we present a unified out-of-core data-virtualization system supporting geo-scientific data sets consisting of multiple large seismic volumes and height-field surfaces, wherein each data set may exceed the size of the graphics memory or possibly even the main memory. Current data sets fall within the range of hundreds of gigabytes up to terabytes in size. Through the mutual utilization of memory and bandwidth resources by multiple data sets, our data-management system is able to share and balance limited system resources among different data sets. We employ multi-resolution methods based on hierarchical octree and quadtree data structures to generate level-of-detail working sets of the data stored in main memory and graphics memory for rendering. The working set generation in our system is based on a common feedback mechanism with inherent support for translucent geometric and volumetric data sets. This feedback mechanism collects information about required levels of detail during the rendering process and is capable of directly resolving data visibility without the application of any costly occlusion culling approaches. A central goal of the proposed out-of-core data management system is an effective virtualization of large data sets. Through an abstraction of the level-of-detail working sets, our system allows developers to work with extremely large data sets independent of their complex internal data representations and physical memory layouts. Based on this out-of-core data virtualization infrastructure, we present distinct rendering approaches for specific visualization problems of large geo-scientific data sets. We demonstrate the application of our data virtualization system and show how multi-resolution data can be treated exactly the same way as regular data sets during the rendering process. An efficient volume ray casting system is presented for the rendering of multiple arbitrarily overlapping multi-resolution volume data sets. Binary space-partitioning volume decomposition of the bounding boxes of the cube-shaped volumes is used to identify the overlapping and non-overlapping volume regions in order to optimize the rendering process. We further propose a ray casting-based rendering system for the visualization of geological subsurface models consisting of multiple very detailed height fields. The rendering of an entire stack of height-field surfaces is accomplished in a single rendering pass using a two-level acceleration structure, which combines a minimum-maximum quadtree for empty-space skipping and sorted lists of depth intervals to restrict ray intersection searches to relevant height fields and depth ranges. Ultimately, we present a unified rendering system for the visualization of entire geological models consisting of highly detailed stacked horizon surfaces and massive volume data. We demonstrate a single-pass ray casting approach facilitating correct visual interaction between distinct translucent model components, while increasing the rendering efficiency by reducing processing overhead of potentially invisible parts of the model. The combination of image-order rendering approaches and the level-of-detail feedback mechanism used by our out-of-core data-management system inherently accounts for occlusions of different data types without the application of costly culling techniques. The unified out-of-core data-management and virtualization infrastructure considerably facilitates the implementation of complex visualization systems. We demonstrate its applicability for the visualization of large geo-scientific data sets using output-sensitive rendering techniques. As a result, the magnitude and multitude of data sets that can be interactively visualized is significantly increased compared to existing approaches. KW - Computer Graphics KW - Visualisation KW - Volume Rendering KW - Large Data Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130725-19855 ER - TY - THES A1 - Schollmeyer, Andre T1 - Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations N2 - Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und Flächen, in den meisten Fällen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und Präsentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung benötigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure benötigen eine verständliche Visualisierung der Simulationsergebnisse, während eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschränkten Hardwareunterstützung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue Fähigkeiten aktueller Grafikkarten aus, um den Stand der Technik bezüglich Qualität, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufwändige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen ermöglichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-Flächen und einen interaktiven Ray-Casting-Algorithmus für die Isoflächenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz für illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation für die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten Ansätze basieren auf rasterisierter Geometrie und sind somit ebenfalls für normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen Realität darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-Datensätzen durchgeführt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer Qualität möglich ist. Die Einführung programmierbarer Transparenz ermöglicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken für die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare für die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden. N2 - In computer-aided design (CAD), industrial products are designed using a virtual 3D model. A CAD model typically consists of curves and surfaces in a parametric representation, in most cases, non-uniform rational B-splines (NURBS). The same representation is also used for the analysis, optimization and presentation of the model. In each phase of this process, different visualizations are required to provide an appropriate user feedback. Designers work with illustrative and realistic renderings, engineers need a comprehensible visualization of the simulation results, and usability studies or product presentations benefit from using a 3D display. However, the interactive visualization of NURBS models and corresponding physical simulations is a challenging task because of the computational complexity and the limited graphics hardware support. This thesis proposes four novel rendering approaches that improve the interactive visualization of CAD models and their analysis. The presented algorithms exploit latest graphics hardware capabilities to advance the state-of-the-art in terms of quality, efficiency and performance. In particular, two approaches describe the direct rendering of the parametric representation without precomputed approximations and timeconsuming pre-processing steps. New data structures and algorithms are presented for the efficient partition, classification, tessellation, and rendering of trimmed NURBS surfaces as well as the first direct isosurface ray-casting approach for NURBS-based isogeometric analysis. The other two approaches introduce the versatile concept of programmable order-independent semi-transparency for the illustrative and comprehensible visualization of depth-complex CAD models, and a novel method for the hybrid reprojection of opaque and semi-transparent image information to accelerate stereoscopic rendering. Both approaches are also applicable to standard polygonal geometry which contributes to the computer graphics and virtual reality research communities. The evaluation is based on real-world NURBS-based models and simulation data. The results show that rendering can be performed directly on the underlying parametric representation with interactive frame rates and subpixel-precise image results. The computational costs of additional visualization effects, such as semi-transparency and stereoscopic rendering, are reduced to maintain interactive frame rates. The benefit of this performance gain was confirmed by quantitative measurements and a pilot user study. KW - Rendering KW - CAD KW - NURBS KW - Computer-Aided Design KW - Isogeometric Analysis KW - Graphics hardware Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181120-38234 ER - TY - THES A1 - Beck, Stephan T1 - Immersive Telepresence Systems and Technologies N2 - Modern immersive telepresence systems enable people at different locations to meet in virtual environments using realistic three-dimensional representations of their bodies. For the realization of such a three-dimensional version of a video conferencing system, each user is continuously recorded in 3D. These 3D recordings are exchanged over the network between remote sites. At each site, the remote recordings of the users, referred to as 3D video avatars, are seamlessly integrated into a shared virtual scenery and displayed in stereoscopic 3D for each user from his or her perspective. This thesis reports on algorithmic and technical contributions to modern immersive telepresence systems and presents the design, implementation and evaluation of the first immersive group-to-group telepresence system in which each user is represented as realistic life-size 3D video avatar. The system enabled two remote user groups to meet and collaborate in a consistent shared virtual environment. The system relied on novel methods for the precise calibration and registration of color- and depth- sensors (RGBD) into the coordinate system of the application as well as an advanced distributed processing pipeline that reconstructs realistic 3D video avatars in real-time. During the course of this thesis, the calibration of 3D capturing systems was greatly improved. While the first development focused on precisely calibrating individual RGBD-sensors, the second stage presents a new method for calibrating and registering multiple color and depth sensors at a very high precision throughout a large 3D capturing volume. This method was further refined by a novel automatic optimization process that significantly speeds up the manual operation and yields similarly high accuracy. A core benefit of the new calibration method is its high runtime efficiency by directly mapping from raw depth sensor measurements into an application coordinate system and to the coordinates of its associated color sensor. As a result, the calibration method is an efficient solution in terms of precision and applicability in virtual reality and immersive telepresence applications. In addition to the core contributions, the results of two case studies which address 3D reconstruction and data streaming lead to the final conclusion of this thesis and to directions of future work in the rapidly advancing field of immersive telepresence research. N2 - In modernen 3D-Telepresence-Systemen werden die Nutzer realistisch dreidimensional repräsentiert und können sich in einer gemeinsamen virtuellen Umgebung treffen. Da sich die Nutzer gegenseitig realistisch sehen können, werden Limitierungen von herkömmlichen zweidimensionalen Videokonferenzsystemen überwunden und neue Möglichkeiten für die Kollaboration geschaffen. Für die Realisierung eines immersiven Telepresence-Systems wird jeder Nutzer kontinuierlich in 3D aufgenommen und als sogenannter 3D-Video-Avatar rekonstruiert. Die 3D-Video-Avatare werden über eine Netzwerkverbindung zwischen den entfernten Orten ausgetauscht, auf jeder Seite in eine gemeinsame virtuelle Szene integriert und für jeden Nutzer perspektivisch korrekt dreidimensional angezeigt. Diese Arbeit trägt algorithmisch und technisch zur aktuellen Forschung im Bereich 3D-Telepresence bei und präsentiert das Design, die Implementierung und die Evaluation eines neuen immersiven Telepresence-Systems. Benutzergruppen können sich dadurch zum ersten Mal von unterschiedlichen Orten in einer konsistenten gemeinsamen virtuellen Umgebung treffen und als realistische lebensgroße 3D-Video-Avatare sehen. Das System basiert auf neu entwickelten Methoden, welche die präzise Kalibrierung und Registrierung von mehreren Farb- und Tiefenkameras in ein gemeinsames Koordinatensystem ermöglichen, sowie auf einer neu entwickelten verteilten Prozesskette, welche die realistische Rekonstruktion von 3D-Video-Avataren in Echtzeit ermöglicht. Im Rahmen dieser Arbeit wurde die Kalibrierung von 3D-Aufnahmesystemen, die auf mehreren Farb- und Tiefenkameras basieren, deutlich verbessert. Eine erste Entwicklung konzentrierte sich auf die präzise Kalibrierung und Registrierung ein- zelner Tiefenkameras. Eine wesentliche Neuentwicklung ermöglicht es, mehrere Farb- und Tiefenkameras mit sehr hoher Genauigkeit innerhalb eines großen 3D-Aufnahmebereichs volumetrisch zu kalibrieren und in ein übergeordnetes Koordinatensystem zu registrieren. Im Laufe der Arbeit wurde die notwendige Nutzerinteraktion durch ein automatisches Optimierungsverfahren deutlich verringert, was die Kalibrierung von 3D-Aufnahmesystemen innerhalb weniger Minuten mit hoher Genauigkeit ermöglicht. Ein wesentlicher Vorteil dieser neuen volumetrischen Kalibrierungsmethode besteht darin, dass gemessene Tiefenwerte direkt in das Koordinatensystem der Anwendung und in das Koordinatensystem der korrespondierenden Farbkamera abgebildet werden. Insbesondere sind während der Anwendungslaufzeit keine Berechnungen zur Linsenentzerrung nötig, da diese bereits implizit durch die volumetrische Kalibrierung ausgeglichen sind. Das in dieser Arbeit entwickelte immersive Telepresence-System hebt sich von verwandten Arbeiten ab. Der durch das System geschaffene virtuelle Begegnungsraum ermöglicht natürliche Interaktionsformen, wie zum Beispiel Gestik oder Mimik, und bietet gleichzeitig etablierte Interaktionstechniken der Virtuellen Realität, welche die gemeinsame Exploration und Analyse von 3D-Inhalten unterstützen. Die in dieser Arbeit neu entwickelte Kalibrierungsmethode stellt eine effiziente Lösung hinsichtlich Genauigkeit und Flexibilität für Virtual-Reality- und moderne 3D-Telepresence-Anwendungen dar. Zusätzlich zu den vorgestellten Entwicklungen tragen die Ergebnisse zweier Fallstudien im Bereich 3D-Rekonstruktion und Netzwerkübertragungzu dieser Arbeit bei und unterstützen Vorschläge und Ausblicke für zukünftige Entwicklungen im fortschreitenden Gebiet der 3D-Telepresence-Forschung. KW - Virtuelle Realität KW - Telepräsenz KW - Mensch-Maschine-Kommunikation KW - Tiefensensor KW - Camera Calibration KW - Depth Camera KW - 3D Telepresence KW - Virtual Reality Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190218-38569 ER -