TY - JOUR A1 - Ghasemi, Hamid A1 - Rafiee, Roham A1 - Zhuang, Xiaoying A1 - Muthu, Jacob A1 - Rabczuk, Timon T1 - Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling JF - Computational Materials Science N2 - Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 295 EP - 305 ER - TY - JOUR A1 - Zhang, Yancheng A1 - Zhuang, Xiaoying A1 - Muthu, Jacob A1 - Mabrouki, Tarek A1 - Fontaine, Michaël A1 - Gong, Yadong A1 - Rabczuk, Timon T1 - Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation JF - Composites Part B Engineering N2 - Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 27 EP - 33 ER - TY - JOUR A1 - Nguyen-Thanh, Nhon A1 - Muthu, Jacob A1 - Zhuang, Xiaoying A1 - Rabczuk, Timon T1 - An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics JF - Computational Mechanics N2 - An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 369 EP - 385 ER - TY - JOUR A1 - Ghasemi, Hamid A1 - Brighenti, Roberto A1 - Zhuang, Xiaoying A1 - Muthu, Jacob A1 - Rabczuk, Timon T1 - Optimization of fiber distribution in fiber reinforced composite by using NURBS functions JF - Computational Materials Science N2 - Optimization of fiber distribution in fiber reinforced composite by using NURBS functions KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 463 EP - 473 ER - TY - JOUR A1 - Ghasemi, Hamid A1 - Brighenti, Roberto A1 - Zhuang, Xiaoying A1 - Muthu, Jacob A1 - Rabczuk, Timon T1 - Sequential reliability based optimization of fiber content and dispersion in fiber reinforced composite by using NURBS finite elements JF - Structural and Multidisciplinary Optimization N2 - Sequential reliability based optimization of fiber content and dispersion in fiber reinforced composite by using NURBS finite elements KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Guo, Hongwei A1 - Zhuang, Xiaoying A1 - Chen, Pengwan A1 - Alajlan, Naif A1 - Rabczuk, Timon T1 - Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis JF - Engineering with Computers N2 - In this work, we present a deep collocation method (DCM) for three-dimensional potential problems in non-homogeneous media. This approach utilizes a physics-informed neural network with material transfer learning reducing the solution of the non-homogeneous partial differential equations to an optimization problem. We tested different configurations of the physics-informed neural network including smooth activation functions, sampling methods for collocation points generation and combined optimizers. A material transfer learning technique is utilized for non-homogeneous media with different material gradations and parameters, which enhance the generality and robustness of the proposed method. In order to identify the most influential parameters of the network configuration, we carried out a global sensitivity analysis. Finally, we provide a convergence proof of our DCM. The approach is validated through several benchmark problems, also testing different material variations. KW - Deep learning KW - Kollokationsmethode KW - Collocation method KW - Potential problem KW - Activation function KW - Transfer learning Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220811-46764 UR - https://link.springer.com/article/10.1007/s00366-022-01633-6 VL - 2022 SP - 1 EP - 22 ER - TY - JOUR A1 - Zhuang, Xiaoying A1 - Huang, Runqiu A1 - Liang, Chao A1 - Rabczuk, Timon T1 - A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage JF - Mathematical Problems in Engineering N2 - Renewable energy resources such as wind and solar are intermittent, which causes instability when being connected to utility grid of electricity. Compressed air energy storage (CAES) provides an economic and technical viable solution to this problem by utilizing subsurface rock cavern to store the electricity generated by renewable energy in the form of compressed air. Though CAES has been used for over three decades, it is only restricted to salt rock or aquifers for air tightness reason. In this paper, the technical feasibility of utilizing hard rock for CAES is investigated by using a coupled thermo-hydro-mechanical (THM) modelling of nonisothermal gas flow. Governing equations are derived from the rules of energy balance, mass balance, and static equilibrium. Cyclic volumetric mass source and heat source models are applied to simulate the gas injection and production. Evaluation is carried out for intact rock and rock with discrete crack, respectively. In both cases, the heat and pressure losses using air mass control and supplementary air injection are compared. KW - Energiespeicherung KW - Druckluft KW - Kaverne KW - Modellierung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170428-31726 ER - TY - JOUR A1 - Zhuang, Xiaoying A1 - Huang, Runqiu A1 - Rabczuk, Timon A1 - Liang, C. T1 - A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage JF - Mathematical Problems in Engineering N2 - A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Budarapu, Pattabhi Ramaiah A1 - Gracie, Robert A1 - Yang, Shih-Wei A1 - Zhuang, Xiaoying A1 - Rabczuk, Timon T1 - Efficient Coarse Graining in Multiscale Modeling of Fracture JF - Theoretical and Applied Fracture Mechanics N2 - Efficient Coarse Graining in Multiscale Modeling of Fracture KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 126 EP - 143 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Zhuang, Xiaoying A1 - Rabczuk, Timon T1 - Orientation dependent thermal conductance in single-layer MoS 2 JF - Scientific Reports N2 - We investigate the thermal conductivity in the armchair and zigzag MoS2 nanoribbons, by combining the non-equilibrium Green's function approach and the first-principles method. A strong orientation dependence is observed in the thermal conductivity. Particularly, the thermal conductivity for the armchair MoS2 nanoribbon is about 673.6 Wm−1 K−1 in the armchair nanoribbon, and 841.1 Wm−1 K−1 in the zigzag nanoribbon at room temperature. By calculating the Caroli transmission, we disclose the underlying mechanism for this strong orientation dependence to be the fewer phonon transport channels in the armchair MoS2 nanoribbon in the frequency range of [150, 200] cm−1. Through the scaling of the phonon dispersion, we further illustrate that the thermal conductivity calculated for the MoS2 nanoribbon is esentially in consistent with the superior thermal conductivity found for graphene. KW - Mechanische Eigenschaft KW - Wärmeleitfähigkeit KW - Nanoribbons, thermal conductivity Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170418-31417 ER -