TY - THES A1 - Reformat, Martin T1 - Zementmahlung - Untersuchungen zum Zusammenhang von Mahlaggregat und Materialeigenschaften N2 - Die Mahlung als Zerkleinerungsprozess stellt seit den Anfängen der Menschheit eine der wichtigsten Verarbeitungsformen von Materialien aller Art dar - von der Getreidemahlung, über das Aufschließen von Heilkräutern in Mörsern bis hin zur Herstellung von Tonern für Drucker und Kopierer. Besonders die Zementmahlung ist in modernen Gesellschaften sowohl ein wirtschaftlicher als auch ein ökologischer Faktor. Mehr als zwei Drittel der elektrischen Energie der Zementproduktion werden für Rohmehl- und Klinker- bzw. Kompositmaterialmahlung verbraucht. Dies ist nur ein Grund, warum der Mahlprozess zunehmend in den Fokus vieler Forschungs- und Entwicklungsvorhaben rückt. Die Komplexität der Zementmahlung steigt im zunehmenden Maße an. Die simple „Mahlung auf Zementfeinheit“ ist seit langem obsolet. Zemente werden maßgeschneidert, mit verschiedensten Kombinationsprodukten, getrennt oder gemeinsam, in unterschiedlichen Mahlaggregaten oder mit ganz neuen Ansätzen gefertigt. Darüber hinaus gewinnt auch der Sektor des Baustoffrecyclings, mit allen damit verbundenen Herausforderungen, immer mehr an Bedeutung. Bei der Fragestellung, wie der Mahlprozess einerseits leistungsfähige Produkte erzeugen kann und andererseits die zunehmenden Anforderungen an Nachhaltigkeit erfüllt, steht das Mahlaggregat im Mittelpunkt der Betrachtungen. Dementsprechend gliedert sich, neben einer eingehenden Literaturrecherche zum Wissensstand, die vorliegende Arbeit in zwei übergeordnete Teile: Im ersten Teil werden Untersuchungen an konventionellen Mahlaggregaten mit in der Zementindustrie verwendeten Kernprodukten wie Portlandzementklinker, Kalkstein, Flugasche und Hüttensand angestellt. Um eine möglichst effektive Mahlung von Zement und Kompositmaterialien zu gewährleisten, ist es wichtig, die Auswirkung von Mühlenparametern zu kennen. Hierfür wurde eine umfangreiche Versuchsmatrix aufgestellt und abgearbeitet. Das Spektrum der Analysemethoden war ebenfalls umfangreich und wurde sowohl auf die gemahlenen Materialien als auch auf die daraus hergestellten Zemente und Betone angewendet. Es konnte gezeigt werden, dass vor allem die Unterscheidung zwischen Mahlkörpermühlen und mahlkörperlosen Mühlen entscheidenden Einfluss auf die Granulometrie und somit auch auf die Zementperformance hat. Besonders stark wurden die Verarbeitungseigenschaften, insbesondere der Wasseranspruch und damit auch das Porengefüge und schließlich Druckfestigkeiten sowie Dauerhaftigkeitseigenschaften der aus diesen Zementen hergestellten Betone, beeinflusst. Bei Untersuchungen zur gemeinsamen Mahlung von Kalkstein und Klinker führten ungünstige Anreicherungseffekte des gut mahlbaren Kalksteins sowie tonigen Nebenbestandteilen zu einer schlechteren Performance in allen Zementprüfungen. Der zweite Teil widmet sich der Hochenergiemahlung. Die dahinterstehende Technik wird seit Jahrzehnten in anderen Wirtschaftsbranchen, wie der Pharmazie, Biologie oder auch Lebensmittelindustrie angewendet und ist seit einiger Zeit auch in der Zementforschung anzutreffen. Beispielhaft seien hier die Planeten- und Rührwerkskugelmühle als Vertreter genannt. Neben grundlegenden Untersuchungen an Zementklinker und konventionellen Kompositmaterialien wie Hüttensand und Kalkstein wurde auch die Haupt-Zementklinkerphase Alit untersucht. Die Hochenergiemahlung von konventionellen Kompositmaterialien generierte zusätzliche Reaktivität bei gleicher Granulometrie gegenüber der herkömmlichen Mahlung. Dies wurde vor allem bei per se reaktivem Zementklinker als auch bei latent-hydraulischem Hüttensand beobachtet. Gemahlene Flugaschen konnten nur im geringen Maße weiter aktiviert werden. Der generelle Einfluss von Oberflächenvergrößerung, Strukturdefekten und Relaxationseffekten eines Mahlproduktes wurden eingehend untersucht und gewichtet. Die Ergebnisse bei der Hochenergiemahlung von Alit zeigten, dass die durch Mahlung eingebrachten Strukturdefekte eine Erhöhung der Reaktivität zur Folge haben. Hierbei konnte festgestellt werden, das maßgeblich Oberflächendefekte, strukturelle (Volumen-)defekte und als Konterpart Selbstheilungseffekte die reaktivitätsbestimmenden Faktoren sind. Weiterhin wurden Versuche zur Mahlung von Altbetonbrechsand durchgeführt. Im Speziellen wurde untersucht, inwieweit eine Rückführung von Altbetonbrechsand, als unverwertbarer Teil des Betonbruchs, in Form eines Zement-Kompositmaterials in den Baustoffkreislauf möglich ist. Die hierfür verwendete Mahltechnik umfasst sowohl konventionelle Mühlen als auch Hochenergiemühlen. Es wurden Kompositzemente mit variiertem Recyclingmaterialanteil hergestellt und auf grundlegende Eigenschaften untersucht. Zur Bewertung der Produktqualität wurde der sogenannte „Aktivierungskoeffizient“ eingeführt. Es stellte sich heraus, dass die Rückführung von Altbetonbrechsand als potentielles Kompositmaterial wesentlich vom Anteil des Zementsteins abhängt. So konnte beispielsweise reiner Zementstein als aufgemahlenes Kompositmaterial eine bessere Performance gegenüber dem mit Gesteinskörnung beaufschlagtem Altbetonbrechsand ausweisen. Bezogen auf die gemessenen Hydratationswärmen und Druckfestigkeiten nahm der Aktivierungskoeffzient mit fallendem Abstraktionsgrad ab. Ebenfalls sank der Aktivierungskoeffizient mit steigendem Substitutionsgrad. Als Vergleich wurden dieselben Materialien in konventionellen Mühlen aufbereitet. Die hier erzielten Ergebnisse können teilweise der Hochenergiemahlung als gleichwertig beurteilt werden. Folglich ist bei der Aktivierung von Recyclingmaterialien weniger die Mahltechnik als der Anteil an aktivierbarem Zementstein ausschlaggebend. N2 - Grinding as a comminution process has been one of the most important forms of processing of all kinds of materials since the beginning of mankind - from grain grinding over digesting medicinal herbs in mortars to producing toners for printers and copiers. Cement grinding in particular is both an economic and an ecological factor in modern societies. More than two-thirds of the electrical energy of cement production is consumed for raw meal and clinker or composite material grinding. This is just one reason why the milling process is increasingly becoming the focus of many research and development projects. And the complexity of cement grinding is increasing. The simple demand to grind to a certain cement fineness is obsolete. Cements are custom-made with a variety of combination products, comminuted separately or together in different grinding units or made with completely new approaches. In addition, the sector of building materials recycling - with all the associated challenges - also wins more and more importance. In terms of the question of how the grinding process could produce high-performance products on the one hand and the increasing demands on sustainability on the other hand, the grinding devices are the focus of the considerations. Accordingly, in addition to an in-depth literature review on the state of knowledge, the present work is divided into two major parts: In the first part investigations are made on conventional grinding devices with core products used in the cement industry, such as Portland cement clinker, limestone, fly ash and granulated blast furnace slag. To ensure the most effective grinding of cement and composite materials, it is important to know the effect of grinding parameters. For this, an extensive experimental matrix was set up and processed. The spectrum of analysis methods was also extensive and was applied to both the milled materials and the cements and concretes made from them. It could be shown that especially the distinction between grinding media mills and non-grinding media mills has a decisive influence on the granulometry and thus also on the cement performance. The processing properties, especially the water demand and thus the pore structure and finally compressive strength and durability properties of the concretes made from these cements, have been strong influenced, particularly. In studies on the common grinding of limestone and clinker an unfavorable enrichment of easily grindable limestone and clayey secondary constituents led to a poorer performance in all cement tests. The second part is devoted to high-energy milling. The technology behind it has been used for decades in other sectors of the economy, such as pharmacy, biology and the food industry and has also been used in cement research for some time. As representatives, the planetary and stirred media ball mill may be mentioned here. In addition to basic investigations on cement clinker and conventional composite materials such as blast furnace slag and limestone, the main Portland cement clinker phase alite was also investigated. The high-energy milling of conventional composite materials generated additional reactivity with the same granulometry compared to conventional grinding. This was observed especially on per se reactive Portland cement clinker as well as on latent-hydraulic blast furnace slag. Ground fly ash could be activated only to a small extent. The general influence of surface enlargement, structural defects and relaxation effects of a ground product were thoroughly investigated and weighted as well. The high-energy milling results of alite showed that the structural defects introduced by milling result in an increased reactivity. It was found that mainly surface defects, structural (volume) defects and as counterpart self-healing effects are the factors determining reactivity. Furthermore, attempts were made to grind concrete waste sand (CDW). In particular, it was examined to what extent a return of CDW, as an unvaluable part of the concrete fracture, in the form of a cement composite material in the building material cycle is possible. The grinding technique used for this purpose includes both conventional mills and high-energy mills. Composite cements with a varied proportion of recycled material were produced and examined for their fundamental properties. For the evaluation of the product quality the so-called äctivation coefficient"was introduced. It was found that the return of used concrete crushed sand as a potential composite significantly depends on the content of the cement paste. For example, pure cement paste as a milled composite showed better performance than the aggregated contaminated CDW. Based on the measured heat of hydration and compressive strengths, the activation coefficient decreased with decreasing degree of abstraction and the activation coefficient also decreased with increasing degree of substitution. For comparison, the same materials were prepared in conventional mills. The results obtained here can be partly considered as equivalent to high-energy milling. Consequently, when activating recycled materials, the grinding technique is less important than the amount of activatable cement paste. KW - Zement KW - Beton KW - Mahlung KW - Zementmahlung KW - Mahlaggregat KW - Vertical roller mill Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20201102-42794 SN - 978-3-00-067121-0 ER - TY - THES A1 - Rickert, Jörg T1 - Zum Einfluss von Langzeitverzögerern auf der Basis von Phosphonsäure auf die Hydratation einzelner Klinkerphasen, Portlandzementklinker und Portlandzemente T1 - About the influence of long-term retarders on the basis of phosphonic acid on the hydration of several clinker phases, portland cement clinkers and portland cements N2 - Neben dem Schwerpunkt der Verflüssigung werden auch Zusatzmittel benötigt, die extrem lange Verarbeitbarkeitszeiten des Betons ermöglichen. Eine neue Wirkungsgruppe, durch die Verarbeitbarkeitszeiten von über 90 Stunden er-reicht werden können, sind Langzeitverzögerer (LVZ) auf der Basis von Phosphonsäure. In systematischen Versuchen wurden grundlegende Erkenntnisse über die Wirkungsmechanismen von LVZ auf die Hydratation gewonnen. Es hat sich gezeigt, dass die verzögernde Wirkung von LVZ auf die Bildung von schwer löslichem Calciumphosphonat zurückzuführen ist, welches die Partikeloberflächen žabdichtetœ. Vom Angebot an gelöstem Calcium hängt es ab, ob sich das žabdichtendeœ Calciumphosphonat direkt bildet oder ob durch den Calciumanspruch des LVZ eine kurzzeitig verstärkte Hydratation reaktiver Klin-kerphasen hervorgerufen wird. Sulfatoptimierte Zemente wiesen aufgrund der Anteile an Sulfatträger genüge! nd Calcium-Ionen für eine sofortige Bildung von Calciumphosphonat auf. In Verbindung mit der Bildung von primärem Ettringit bildet die Sulfatträgeroptimierung die Grundlage für die erwünschte Wirkungsweise des Zusatzmittels. N2 - In addition to the large group of plasticizing admixtures, such kind of admixtures are required which enable a very long time of workability of concrete. The workability of concrete over a period of more than 90 hours can be achieved by long-term retarders. This new type of admixture is based on phosphonic acid. By systematic investigations profound knowledge about the operative mechanisms of long-term retarders could be drawn. The retarding action is due to a formation of sparingly soluble calcium phosphonate which žseal upœ the particle surface. Whether the addition of long-term retarder leads to an immediate formation of calcium phosphonate or to a short termed acceleration of the hydration of reactive clinker phases depends on the supply of solved calcium. Because of the adjusted calcium sulphate content in cement the concentration of calcium is high enough for an immediate formation of sparingly soluble calcium! phosphonate. In combination with the formation of primary ettringite the calcium sulphate agent is the basis for the desired mode of action of the long-term retarder. KW - Beton KW - Recycling KW - Hydratation KW - Klinker KW - Betonzusatzmittel KW - Betonzusatzmittel KW - Langzeitverzögerer KW - Phosphonocarbonsäure (PBTC) KW - Wirkungsmechanismen KW - Zement KW - concrete admixture KW - long-term retarder KW - phosphonocarbon acid (PBTC) KW - operative mechanisms KW - cement Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20040211-232 ER - TY - THES A1 - Riechert, Christin T1 - Hydratation und Eigenschaften von Gips-Zement-Puzzolan-Bindemitteln mit alumosilikatischen Puzzolanen N2 - Reine Calciumsulfatbindemittel weisen eine hohe Löslichkeit auf. Feuchteinwirkung führt zudem zu starken Festigkeitsverlusten. Aus diesem Grund werden diese Bindemittel ausschließlich für Baustoffe und -produkte im Innenbereich ohne permanenten Feuchtebeanspruchung eingesetzt. Eine Möglichkeit, die Feuchtebeständigkeit zu erhöhen, ist die Beimischung puzzolanischer und zementärer Komponenten. Diese Mischsysteme werden Gips-Zement-Puzzolan-Bindemittel (kurz: GZPB) genannt. Mischungen aus Calciumsulfaten und Portlandzementen allein sind aufgrund der treibenden Ettringitbildung nicht raumbeständig. Durch die Zugabe von puzzolanischen Stoffen können aber Bedingungen im hydratisierenden System geschaffen werden, welche eine rissfreie Erhärtung ermöglichen. Hierfür ist eine exakte Rezeptierung der GZPB notwendig, um die GZPB-typischen, ettringitbedingten Dehnungen zeitlich zu begrenzen. Insbesondere bei alumosilikatischen Puzzolanen treten während der Hydratation gegenüber rein silikatischen Puzzolanen deutlich höhere Expansionen auf, wodurch die Gefahr einer potenziellen Rissbildung steigt. Für die Erstellung geeigneter GZPB-Zusammensetzungen bedarf es daher einer Methodik, um raumbeständig erhärtende Systeme sicher von destruktiven Mischungen unterscheiden zu können. Sowohl für die Rezeptierung als auch für die Anwendung der GZPB existieren in Deutschland keinerlei Normen. Darüber hinaus sind die Hydratationsvorgänge sowie die entstehenden Produkte nicht konsistent beschrieben. Auch auf die Besonderheiten der GZPB mit alumosilikatischen Puzzolanen wird in der Literatur nur unzureichend eingegangen. Ziel war es daher, ein grundlegendes Verständnis der Hydratation sowie eine sichere Methodik zur Rezeptierung raumbeständig und rissfrei erhärtender GZPB, insbesondere in Hinblick auf die Verwendung alumosilikatischer Puzzolane, zu erarbeiten. Darüber hinaus sollte systematisch der Einfluss der Einzelkomponenten auf Hydratation und Eigenschaften dieser Bindemittelsysteme untersucht werden. Dies soll ermöglichen, die GZPB für ein breites Anwendungsspektrum als Bindemittel zu etablieren, und somit vorteilhafte Eigenschaften der Calciumsulfate (geringe Schwindneigung, geringe CO2-Emission etc.) mit der Leistungs-fähigkeit von Zementen (Wasserbeständigkeit, Festigkeit, Dauerhaftigkeit etc.) zu verbinden. Als Ausgangsstoffe der Untersuchungen zu den GZPB wurden Stuckgips und Alpha-Halbhydrat als Calciumsulfatbindemittel in unterschiedlichen Anteilen im GZPB verwendet. Die Puzzolan-Zement-Verhältnisse wurden ebenfalls variiert. Als Puzzolan kam für den Großteil der Untersuchungen ein alumosilikatisches Metakaolin zum Einsatz. Als kalkspendende Komponente diente ein reiner Portlandzement. Das Untersuchungsprogramm gliederte sich in 4 Teile. Zuerst wurde anhand von CaO- und pH-Wert-Messungen in Suspensionen sowie dem Längenänderungsverhalten von Bindemittelleimen verschiedener Zusammensetzungen eine Vorauswahl geeigneter GZPB-Rezepturen ermittelt. Danach erfolgten, ebenfalls an Bindemittelleimen, Untersuchungen zu den Eigenschaften der als geeignet eingeschätzten GZPB-Mischungen. Hierzu zählten Langzeitbetrachtungen zur rissfreien Erhärtung bei unterschiedlichen Umgebungsbedingungen sowie die Festigkeitsentwicklung im trockenen und feuchten Zustand. Im nächsten Schritt wurde anhand zweier exemplarischer GZPB-Zusammensetzungen (mit silikatischen und alumosilikatischen Puzzolan) die prinzipiell mögliche Phasenzusammensetzung unter Variation des Puzzolan-Zement-Verhältnisses (P/Z-Verhältnis) und des Calciumsulfatanteils im thermodynamischen Gleichgewichtszustand berechnet. Hier wurde im Besonderen auf Unterschiede der silikatischen und alumosilikatischen Puzzolane eingegangen. Im letzten Teil der Untersuchungen wurden die Hydratationskinetik der GZPB sowie die Gefügeentwicklung näher betrachtet. Hierfür wurden die Porenlösungen chemisch analysiert und Sättigungsindizes berechnet, sowie elektronenmikropische, porosimetrische und röntgenografische Untersuchungen durchgeführt. Abschließend wurden die Ergebnisse gesamtheitlich interpretiert, da die Ergebnisse der einzelnen Untersuchungsprogramme miteinander in Wechselwirkung stehen. Als hauptsächliche Hydratationsprodukte wurden Calciumsulfat-Dihydrat, Ettringit und C-(A)-S-H-Phasen ermittelt, deren Anteile im GZPB neben dem Calciumsulfatanteil und dem Puzzolan-Zement-Verhältnis auch deutlich vom Wasserangebot und der Gefügeentwicklung abhängen. Bei Verwendung von alumosilikatischen Puzzolans kommt es wahrscheinlich zur teilweisen Substitution des Siliciums durch Aluminium in den C-S-H-Phasen. Dies erscheint aufgrund des Nachweises der für diese Phasen typischen, folienartigen Morphologie wahrscheinlich. Portlandit wurde in raumbeständigen GZPB-Systemen nur zu sehr frühen Zeitpunkten in geringen Mengen gefunden. In den Untersuchungen konnte ein Teil der in der Literatur beschriebenen, prinzipiellen Hydratationsabläufe bestätigt werden. Bei Verwendung von Halbhydrat als Calciumsulfatkomponente entsteht zuerst Dihydrat und bildet die Primärstruktur der GZPB. In dieses existierende Grundgefüge kristallisieren dann das Ettringit und die C-(A)-S-H-Phasen. In den GZPB sorgen entgegen der Beschreibungen in der Literatur nicht ausschließlich die C-(A)-S-H-Phasen zur Verbesserung der Feuchtebeständigkeit und der Erhöhung des Festigkeitsniveaus, sondern auch das Ettringit. Beide Phasen überwachsen im zeitlichen Verlauf der Hydratation die Dihydratkristalle in der Matrix und hüllen diese – je nach Calciumsulfatanteil im GZPB – teilweise oder vollständig ein. Diese Umhüllung sowie die starke Gefügeverdichtung durch die C-(A)-S-H-Phasen und das Ettringit bedingen, dass ein lösender Angriff durch Wasser erschwert oder gar verhindert wird. Gleichzeitig wird die Gleitfähigkeit an den Kontaktstellen der Dihydratkristalle verringert. Eine rissfreie und raumbeständige Erhärtung ist für die gefahrlose Anwendung eines GZPB-Systems essentiell. Hierfür ist die Kinetik der Ettringitbildung von elementarer Bedeutung. Die gebildete Ettringitmenge spielt nur eine untergeordnete Rolle. Selbst ausgeprägte, ettringitbedingte Dehnungen und hohe sich bildende Mengen führen zu frühen Zeitpunkten, wenn die Dihydratkristalle noch leicht gegeneinander verschiebbar sind, zu keinen Schäden. Bleibt die Übersättigung bezüglich Ettringit und somit auch der Kristallisationsdruck allerdings über einen langen Zeitraum hoch, genügen bereits geringe Ettringitmengen, um das sich stetig verfestigende Gefüge stark zu schädigen. Die für die raumbeständige Erhärtung der GZPB notwendige, schnelle Abnahme der Ettringitübersättigung wird hauptsächlich durch die Reaktivität des Puzzolans beeinflusst. Die puzzolanische Reaktion führt zur Bindung des aus dem Zement stammenden Calciumhydroxid durch die Bildung von C-(A)-S-H-Phasen und Ettringit. Hierdurch sinkt die Calcium- und Hydroxidionenkonzentration in der Porenlösung im Verlauf der Hydratation, wodurch auch die Übersättigung bezüglich Ettringit abnimmt. Je höher die Reaktivität des Puzzolans ist, desto schneller sinkt der Sättigungsindex des Ettringits und somit auch der Kristallisationsdruck. Nach Unterschreiten eines noch näher zu klärendem Grenzwert der Übersättigung stagnieren die Dehnungen. Das Ettringit kristallisiert bzw. wächst nun bevorzugt in den Poren ohne eine weitere, äußere Volumenzunahme zu verursachen. Um eine schadensfreie Erhärtung des GZPB zu gewährleisten, muss gerade in der frühen Phase der Hydratation ein ausreichendes Wasserangebot gewährleistet werden, so dass die Ettringitbildung möglichst vollständig ablaufen kann. Andernfalls kann es bei einer Wiederbefeuchtung zur Reaktivierung der Ettringitbildung kommen, was im eingebauten Zustand Schäden verursachen kann. Die Gewährleistung eines ausreichenden Wasserangebots ist im GZPB-System nicht unproblematisch. In Abhängigkeit der GZPB-Zusammensetzung können sich große Ettringitmengen bilden, die einen sehr hohen Wasserbedarf aufweisen. Deshalb kann es, je nach verwendeten Wasser-Bindemittel-Wert, im Bindemittelleim zu einem Wassermangel kommen, welcher die weitere Hydratation verlangsamt bzw. komplett verhindert. Zudem können GZPB-Systeme teils sehr dichte Gefüge ausbilden, wodurch der Wassertransport zum Reaktionsort des Ettringits zusätzlich behindert wird. Die Konzeption raumbeständiger GZPB-Systeme muss anhand mehrerer aufeinander aufbauender Untersuchungen erfolgen. Zur Vorauswahl geeigneter Puzzolan-Zementverhältnisse eignen sich die Messungen der CaO-Konzentration und des pH-Wertes in Suspensionen. Als alleinige Beurteilungsgrundlage reicht dies allerdings nicht aus. Zusätzlich muss das Längenänderungs-verhalten beurteilt werden. Raumbeständige Mischungen mit alumosilikatischen Puzzolanen zeigen zu frühen Zeitpunkten starke Dehnungen, welche dann abrupt stagnieren. Stetige – auch geringe – Dehnungen weisen auf eine destruktive Zusammensetzung hin. Mit diesem mehrstufigen Vorgehen können raumbeständige, stabile GZPB-Systeme konzipiert werden, so dass die Zielstellung der Arbeit erreicht wurde und ein sicherer praktischer Einsatz dieser Bindemittelart gewährleistet werden kann.   KW - Gips KW - Zement KW - Hydratation KW - Gips-Zement-Puzzolan-Bindemittel KW - Hydratation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220825-47076 SN - 978-3-00-073003-0 ER - TY - THES A1 - Rößler, Christiane T1 - Hydratation, Fließfähigkeit und Festigkeitsentwicklung von Portlandzement – Einfluss von Fließmitteln, Alkalisulfaten und des Abbindereglers T1 - Hydration, fluidity and strength development in Portland cement – influence of superplasticizers, alkali sulphates and set regulator N2 - Eine zielführende Anwendung von Zusatzmitteln bei der Ausführung anspruchsvoller Betonbauten setzt einen hohen Kenntnisstand bezüglich der Wirkungsmechanismen und Interaktionen der einzelnen Betonkomponenten voraus. In der vorliegenden Arbeit wurden einige Aspekte der Zementhydratation in Abhängigkeit von der Fließmittelzugabe diskutiert. Im Ergebnis liefern die Teile eins und zwei der vorliegenden Arbeit einen Beitrag dazu, Veränderungen der Fließfähigkeit von Zementleim in Abhängigkeit der Zementhydratation und Fließmittelzugabe besser zu verstehen. Es konnte so z.B. gezeigt werden, dass Bildung langprismatischer Kristalle (z.B. Syngenit, Gips) die Fließfähigkeit von Zementleim und Beton vermindert. Infolge anhaltender Scherung von Zementleimen / Betonen mit langprismatischen Kristallen wird ein Zuwachs an Fließfähigkeit erzielt. Elektronenmikroskopische Untersuchungen zeigen, dass dies darauf zurückzuführen ist, dass die Kristalle in eine Vorzugsorientierung relativ zur Scherbewegung rotieren. Weiterhin wurde der Mechanismus einer so genannten Zement-Fließmittel-Inkompatibilität aufgezeigt. Durch diese Erweiterung des Kenntnisstandes zum Einfluss von Fließmitteln auf die Zementhydratation ist es möglich der Zement-Fließmittel-Inkompatibilität durch gezielte Auswahl des Zementes vorzubeugen. Dabei ist besonders darauf zu achten, dass der Zement ein ausgewogenes Verhältnis an zur Reaktion zur Verfügung stehendem C3A und Menge / Löslichkeit des Abbindereglers besitzt. Fließmittel verändern nicht nur die Verarbeitungseigenschaften sondern auch die Festigkeit und Dauerhaftigkeit von Zementstein und Beton. Im dritten Teil der vorliegenden Arbeit wird daher der Einfluss der Fließmittel und deren verflüssigender Wirkung auf die Festigkeitsentwicklung von Zementstein und C3S untersucht. Es konnte gezeigt werden, dass durch die dispergierende Wirkung der Fließmittel auch ohne Verminderung des Wasserzementwertes, eine Verdichtung des Zementsteingefüges erzielt werden kann. Es konnte weiterhin gezeigt werden, dass durch die Erhöhung der Partikelpackungsdichte am Anfang der Hydratation die Ausbildung der festigkeitsgebenden C-S-H Phasen verändert wird. Ein dichteres Verwachsen dieser nanostrukturierten C-S-H Phasen ermöglicht einen zusätzlichen Festigkeitszuwachs. N2 - The construction of sophisticated concrete buildings requires the pinpointed application of concrete additives. This requires a high level of knowledge concerning the interaction and mode of action of individual concrete components. The presented study aims to improve the understanding of the concrete components cement and superplasticizers. Main focus is laid on the influence of superplasticizers on cement hydration reactions and the consequences for cement and concrete performance characteristics (fluidity and strength). Results of parts one and two of the thesis reveal how the fluidity of cement paste is influenced by cement hydration and addition of superplasticizers. It is shown that the formation of long prismatic crystals like syngenite and gypsum decreases the fluidity of cement pastes and concrete. This decrease in fluidity is partly reversible if the suspension is continuously stirred. It was proven by scanning electron microscopy (SEM) that this gain in fluidity is caused by the rotation of long prismatic crystals into a preferred orientation. Furthermore the cause of a cement-superplasticizers-incompatibility was identified. The knowledge of this mechanism is essential for a successful selection of cement type in combination with superplasticizers. Results showed that for an effective selection of polycarboxylate-type superplasticizer and cement, it is essential that the ratio of aluminate clinker phases (C3A) to the amount / solubility of set regulator is appropriate. Superplasticizers improve not only the fluidity but also the compressive strength of cement and concrete. The third part of the thesis shows how the liquefying action of superplasticizers influences the strength development of cement and C3S pastes. Thus it was shown that a densification of the cement microstructure is achieved by the superplasticizers dispersing action. The increased particle packing density caused by superplasticizers in the suspension state of cement pastes increases the intergrowth of strength determining C-S-H phases. This leads to an increase in compressive strength without diminishing the water to cement ratio. KW - Zement KW - Hydratation KW - Mikrostruktur KW - Betonverflüssiger KW - Festigkeit KW - Fließverhalten KW - Alkalisulfate KW - Abbinderegler KW - C-S-H Phasen KW - Fließmittel KW - cement KW - hydration KW - microstructure KW - superplasticizer KW - strength KW - fluidity KW - C-S-H phases KW - set regulator Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20070206-8425 N1 - ISBN 978-3-8325-1490-7, Logos Verlag Berlin, 2007 ER -