TY - THES A1 - Kurukuri, Srihari T1 - Homogenization of Damaged Concrete Mesostructures using Representative Volume Elements - Implementation and Application to SLang N2 - This master thesis explores an important and under-researched topic on the so-called bridging of length scales (from >meso< to >macro<), with the concept of homogenization in which the careful characterization of mechanical response requires that the developed material model >bridge< the representations of events that occur at two different scales. The underlying objective here is to efficiently incorporate material length scales in the classical continuum plasticity/damage theories through the concept of homogenization theory. The present thesis is devoted to computational modeling of heterogeneous materials, primarily to matrix-inclusion type of materials. Considerations are focused predominantly on the elastic and damage behavior as a response to quasistatic mechanical loading. Mainly this thesis focuses to elaborate a sound numerical homogenization model which accounts for the prediction of overall properties with the application of different types of boundary conditions namely: periodic, homogeneous and mixed type of boundary conditions over two-dimensional periodic and non-periodic RVEs and three-dimensional non-periodic RVEs. Identification of the governing mechanisms and assessing their effect on the material behavior leads one step further. Bringing together this knowledge with service requirements allows for functional oriented materials design. First, this thesis gives attention on providing the theoretical basic mechanisms involved in homogenization techniques and a survey will be made on existing analytical methods available in literature. Second, the proposed frameworks are implemented in the well known finite element software programs ANSYS and SLang. Simple and efficient algorithms in FORTRAN are developed for automated microstructure generation using RSA algorithm in order to perform a systematic numerical testing of microstructures of composites. Algorithms are developed to generate constraint equations in periodic boundary conditions and different displacements applied spatially over the boundaries of the RVE in homogeneous boundary conditions. Finally, nonlinear simulations are performed at mesolevel, by considering continuum scalar damage behavior of matrix material with the linear elastic behavior of aggregates with the assumption of rigid bond between constituents. KW - Schadensmechanik KW - Finite-Elemente-Methode KW - Beton KW - Homogenisierung KW - Repräsentative Volumen Elemente KW - Mesoskala KW - Homogenization KW - Representative Volume Elements KW - Mesoscale Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-6670 N1 - Der Volltext-Zugang wurde im Zusammenhang mit der Klärung urheberrechtlicher Fragen mit sofortiger Wirkung gesperrt. ER - TY - THES A1 - Schrader, Kai T1 - Algorithmische Umsetzung eines elasto-plastischen Kontakt-Materialgesetzes zur Abbildung der Rissflächen-Degradation bei kohäsiven Rissen N2 - Entwicklung eines Algorithmus für ein nichtlineares Materialgesetz für die vollautomatische Rissentwicklungssimulation unter Verwendung der am Institut für Strukturmechanik entwickelten netzfreien Verfahren. In Anlehnung an die Kontinuumsplastizität wird unter Verwendung einer arbeitsbasierten Formulierung mit Kombination der Mode I und Mode IIa Bruchenergien für sensitive Strukturen und eines nicht-assoziierten Fließgesetzes werden die Rissweggrößen (Rissöffnungsweite und Rissgleitungen) iterativ ermittelt. Dadurch ist es möglich, den Dilatanzeffekt sowie die verzahnte Kontaktfläche und die daraus resultierenden erhöhten Schubwiderstände abzubilden. Umsetzung mit Hilfe des sehr effizienten impliziten Closest Point Projection Iterationsverfahren auf Basis einer 3-D Kontaktformulierung (Kontakt-Elemente). 2-D Implementation in die Forschungssoftware SLang des Instituts für Strukturmechanik der Bauhaus-Universität Weimar. Verifikation der Modellcharakteristik mit signifikanten Belastungszuständen. Zwei Anwendungsbeispiele zur Rissfortschrittsberechnung sind unter Verwendung des umgesetzten Materialgesetzes zum Einsatz gekommen. Untersuchungen hinsichtlich der Materialparameter wurden vorgenommen. N2 - In this documentation a general model for combined normal/shear cracking will be presented. Basically it is defined of the normal and shear stresses of a cohesive crack with the corresponding displacements in normal and tangential direction. For the load state there can be considered three cases of loading: pure tension, shear-tension and shear-compression. In the softening state of quasi-brittle materials like concrete there are be mould physical effects like dilatancy by shearing deformations, nevertheless no dilatancy under very high compression can be performed. By this way it is additionally possible to simulate extended roughness at the contact surface besides the coulomb criteria as it exists in real cracking deformations of structures characterized by sensitive material behavior. To enable this goal in context of smeared crack analysis a special feature in combined activating Mode I and Mode II fracture energies (mixed mode cracking) is used. \\ After presenting this model a direct way for implementation as a constitutive law based for interface elements will be realized. Integrating this to the stochastic FE software SLang - The Structural Language some tests for verificating the interface model (by comparing the numerical results with existing experimental data) will be performed as well as discussing the cracking model with regard to practical aspects. KW - Dilatanz KW - Bruchzone KW - Rissbildung KW - plastische Formänderungsarbeit KW - nicht-assoziierte Fließfläche KW - Kontaktformulierung KW - Rissfortschrittsberechnung KW - dilatancy KW - mixed mode cracking KW - mode I KW - mode IIa KW - closest point projection Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-6195 ER -