TY - THES A1 - Wehner, Diana T1 - Dynamische Analyse der Dreiturmanlage der St. Severikirche in Erfurt N2 - Im Zusammenhang mit der gegenwärtigen Zustandsbewertung und geplanten Sanierung der Dreiturmanlage der St. Severikirche in Erfurt wird eine dynamische Analyse unter Glockenläuten mit Hilfe eines Finite-Elemente-Modells durchgeführt. Mit diesem unter Verwendung des Programms SLang erstellten FE-Modell wird das Schwingungsverhalten der Dreiturmanlage nachgebildet. Dabei dient als Grundlage die zuvor erfolgte Schwingungsmessung. Mit dem angepassten Modell werden schwingungsreduzierende Maßnahmen hinsichtlich ihrer Wirksamkeit untersucht und bewertet. Weiterhin wird an Ersatzsystemen die aktive Schwingungsisolierung mittels Glockenstuhlunterkonstruktion und der Einbau eines passiven Tilgerdämpfers betrachtet. KW - Dynamische Analyse KW - Glockenläuten KW - Glocke KW - Schwingungstilger KW - Schwingungsverhalten KW - Periodendauer KW - Schwingungsdämpfung KW - Schwingungsanregung Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-7410 N1 - Der Volltext-Zugang wurde im Zusammenhang mit der Klärung urheberrechtlicher Fragen mit sofortiger Wirkung gesperrt. ER - TY - THES A1 - Abeltshauser, Rainer T1 - Identification and separation of physical effects of coupled systems by using defined model abstractions N2 - The thesis investigates at the computer aided simulation process for operational vibration analysis of complex coupled systems. As part of the internal methods project “Absolute Values” of the BMW Group, the thesis deals with the analysis of the structural dynamic interactions and excitation interactions. The overarching aim of the methods project is to predict the operational vibrations of engines. Simulations are usually used to analyze technical aspects (e. g. operational vibrations, strength, ...) of single components in the industrial development. The boundary conditions of submodels are mostly based on experiences. So the interactions with neighboring components and systems are neglected. To get physically more realistic results but still efficient simulations, this work wants to support the engineer during the preprocessing phase by useful criteria. At first suitable abstraction levels based on the existing literature are defined to identify structural dynamic interactions and excitation interactions of coupled systems. So it is possible to separate different effects of the coupled subsystems. On this basis, criteria are derived to assess the influence of interactions between the considered systems. These criteria can be used during the preprocessing phase and help the engineer to build up efficient models with respect to the interactions with neighboring systems. The method was developed by using several models with different complexity levels. Furthermore, the method is proved for the application in the industrial environment by using the example of a current combustion engine. T2 - Identifikation und Separation physikalischer Effekte von gekoppelten Systemen mittels definierter Modellabstraktionen T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2017,1 KW - Strukturdynamik KW - Wechselwirkung KW - Schwingung KW - Berechnung KW - Numerische Berechnung KW - Modellbildung KW - Schwingungsanalyse KW - Simulationsprozess Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28600 ER - TY - THES A1 - Brehm, Maik T1 - Vibration-based model updating: Reduction and quantification of uncertainties N2 - Numerical models and their combination with advanced solution strategies are standard tools for many engineering disciplines to design or redesign structures and to optimize designs with the purpose to improve specific requirements. As the successful application of numerical models depends on their suitability to represent the behavior related to the intended use, they should be validated by experimentally obtained results. If the discrepancy between numerically derived and experimentally obtained results is not acceptable, a model revision or a revision of the experiment need to be considered. Model revision is divided into two classes, the model updating and the basic revision of the numerical model. The presented thesis is related to a special branch of model updating, the vibration-based model updating. Vibration-based model updating is a tool to improve the correlation of the numerical model by adjusting uncertain model input parameters by means of results extracted from vibration tests. Evidently, uncertainties related to the experiment, the numerical model, or the applied numerical solving strategies can influence the correctness of the identified model input parameters. The reduction of uncertainties for two critical problems and the quantification of uncertainties related to the investigation of several nominally identical structures are the main emphases of this thesis. First, the reduction of uncertainties by optimizing reference sensor positions is considered. The presented approach relies on predicted power spectral amplitudes and an initial finite element model as a basis to define the assessment criterion for predefined sensor positions. In combination with geometry-based design variables, which represent the sensor positions, genetic and particle swarm optimization algorithms are applied. The applicability of the proposed approach is demonstrated on a numerical benchmark study of a simply supported beam and a case study of a real test specimen. Furthermore, the theory of determining the predicted power spectral amplitudes is validated with results from vibration tests. Second, the possibility to reduce uncertainties related to an inappropriate assignment for numerically derived and experimentally obtained modes is investigated. In the context of vibration-based model updating, the correct pairing is essential. The most common criterion for indicating corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases and is not reliable for automatic approaches. Hence, an alternative criterion, the energy-based modal assurance criterion, is proposed. This criterion combines the mathematical characteristic of orthogonality with the physical properties of the structure by modal strain energies. A numerical example and a case study with experimental data are presented to show the advantages of the proposed energy-based modal assurance criterion in comparison to the traditional modal assurance criterion. Third, the application of optimization strategies combined with information theory based objective functions is analyzed for the purpose of stochastic model updating. This approach serves as an alternative to the common sensitivity-based stochastic model updating strategies. Their success depends strongly on the defined initial model input parameters. In contrast, approaches based on optimization strategies can be more flexible. It can be demonstrated, that the investigated nature inspired optimization strategies in combination with Bhattacharyya distance and Kullback-Leibler divergence are appropriate. The obtained accuracies and the respective computational effort are comparable with sensitivity-based stochastic model updating strategies. The application of model updating procedures to improve the quality and suitability of a numerical model is always related to additional costs. The presented innovative approaches will contribute to reduce and quantify uncertainties within a vibration-based model updating process. Therefore, the increased benefit can compensate the additional effort, which is necessary to apply model updating procedures. N2 - Eine typische Anwendung von numerischen Modellen und den damit verbundenen numerischen Lösungsstrategien ist das Entwerfen oder Ertüchtigen von Strukturen und das Optimieren von Entwürfen zur Verbesserung spezifischer Eigenschaften. Der erfolgreiche Einsatz von numerischen Modellen ist abhängig von der Eignung des Modells bezüglich der vorgesehenen Anwendung. Deshalb ist eine Validierung mit experimentellen Ergebnissen sinnvoll. Zeigt die Validierung inakzeptable Unterschiede zwischen den Ergebnissen des numerischen Modells und des Experiments, sollte das numerische Modell oder das experimentelle Vorgehen verbessert werden. Für die Modellverbesserung gibt es zwei verschiedene Möglichkeiten, zum einen die Kalibrierung des Modells und zum anderen die grundsätzliche Änderung von Modellannahmen. Die vorliegende Dissertation befasst sich mit der Kalibrierung von numerischen Modellen auf der Grundlage von Schwingungsversuchen. Modellkalibrierung ist eine Methode zur Verbesserung der Korrelation zwischen einem numerischen Modell und einer realen Struktur durch Anpassung von Modelleingangsparametern unter Verwendung von experimentell ermittelten Daten. Unsicherheiten bezüglich des numerischen Modells, des Experiments und der angewandten numerischen Lösungsstrategie beeinflussen entscheidend die erzielbare Qualität der identifizierten Modelleingangsparameter. Die Schwerpunkte dieser Dissertation sind die Reduzierung von Unsicherheiten für zwei kritische Probleme und die Quantifizierung von Unsicherheiten extrahiert aus Experimenten nominal gleicher Strukturen. Der erste Schwerpunkt beschäftigt sich mit der Reduzierung von Unsicherheiten durch die Optimierung von Referenzsensorpositionen. Das Bewertungskriterium für vordefinierte Sensorpositionen basiert auf einer theoretischen Abschätzung von Amplituden der Spektraldichtefunktion und einem dazugehörigen Finite Elemente Modell. Die Bestimmung der optimalen Konfiguration erfolgt durch eine Anwendung von Optimierungsmethoden basierend auf genetischen Algorithmen und Schwarmintelligenzen. Die Anwendbarkeit dieser Methoden wurde anhand einer numerischen Studie an einem einfach gelagerten Balken und einem real existierenden komplexen Versuchskörper nachgewiesen. Mit Hilfe einer experimentellen Untersuchung wird die Abschätzung der statistischen Eigenschaften der Antwortspektraldichtefunktionen an diesem Versuchskörper validiert. Im zweiten Schwerpunkt konzentrieren sich die Untersuchungen auf die Reduzierung von Unsicherheiten, hervorgerufen durch ungeeignete Kriterien zur Eigenschwingformzuordnung. Diese Zuordnung ist entscheidend für Modellkalibrierungen basierend auf Schwingungsversuchen. Das am Häufigsten verwendete Kriterium zur Zuordnung ist das modal assurance criterion. In manchen Anwendungsfällen ist dieses Kriterium jedoch kein zuverlässiger Indikator. Das entwickelte alternative Kriterium, das energy-based modal assurance criterion, kombiniert das mathematische Merkmal der Orthogonalität mit den physikalischen Eigenschaften der untersuchten Struktur mit Hilfe von modalen Formänderungsarbeiten. Ein numerisches Beispiel und eine Sensitivitätsstudie mit experimentellen Daten zeigen die Vorteile des vorgeschlagenen energiebasierten Kriteriums im Vergleich zum traditionellen modal assurance criterion. Die Anwendung von Optimierungsstrategien auf stochastische Modellkalibrierungsverfahren wird im dritten Schwerpunkt analysiert. Dabei werden Verschiedenheitsmaße der Informationstheorie zur Definition von Zielfunktionen herangezogen. Dieser Ansatz stellt eine Alternative zu herkömmlichen Verfahren dar, welche auf gradientenbasierten Sensitivitätsmatrizen zwischen Eingangs- und Ausgangsgrößen beruhen. Deren erfolgreicher Einsatz ist abhängig von den Anfangswerten der Eingangsgrößen, wobei die vorgeschlagenen Optimierungsstrategien weniger störanfällig sind. Der Bhattacharyya Abstand und die Kullback-Leibler Divergenz als Zielfunktion, kombiniert mit stochastischen Optimierungsverfahren, erwiesen sich als geeignet. Bei vergleichbarem Rechenaufwand konnten ähnliche Genauigkeiten wie bei den Modellkalibrierungsverfahren, die auf Sensitivitätsmatrizen basieren, erzielt werden. Die Anwendung von Modellkalibrierungsverfahren zur Verbesserung der Eignung eines numerischen Modells für einen bestimmten Zweck ist mit einem Mehraufwand verbunden. Die präsentierten innovativen Verfahren tragen zu einer Reduzierung und Quantifizierung von Unsicherheiten innerhalb eines Modellkalibrierungsprozesses basierend auf Schwingungsversuchen bei. Mit dem zusätzlich generierten Nutzen kann der Mehraufwand, der für eine Modellkalibrierung notwendig ist, nachvollziehbar begründet werden. T2 - Modellkalibrierung basierend auf Schwingungsversuchen: Reduzierung und Quantifizierung von Unsicherheiten T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2011,1 KW - Dynamik KW - Optimierung KW - Modellkalibrierung KW - Modezuordung KW - optimale Sensorpositionierung KW - model updating KW - mode pairing KW - optimal sensor positions KW - dissimilarity measures KW - optimization Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20110926-15553 ER - TY - THES A1 - Vollmering, Max T1 - Damage Localization of Mechanical Structures by Subspace Identification and Krein Space Based H-infinity Estimation N2 - This dissertation is devoted to the theoretical development and experimental laboratory verification of a new damage localization method: The state projection estimation error (SP2E). This method is based on the subspace identification of mechanical structures, Krein space based H-infinity estimation and oblique projections. To explain method SP2E, several theories are discussed and laboratory experiments have been conducted and analysed. A fundamental approach of structural dynamics is outlined first by explaining mechanical systems based on first principles. Following that, a fundamentally different approach, subspace identification, is comprehensively explained. While both theories, first principle and subspace identification based mechanical systems, may be seen as widespread methods, barely known and new techniques follow up. Therefore, the indefinite quadratic estimation theory is explained. Based on a Popov function approach, this leads to the Krein space based H-infinity theory. Subsequently, a new method for damage identification, namely SP2E, is proposed. Here, the introduction of a difference process, the analysis by its average process power and the application of oblique projections is discussed in depth. Finally, the new method is verified in laboratory experiments. Therefore, the identification of a laboratory structure at Leipzig University of Applied Sciences is elaborated. Then structural alterations are experimentally applied, which were localized by SP2E afterwards. In the end four experimental sensitivity studies are shown and discussed. For each measurement series the structural alteration was increased, which was successfully tracked by SP2E. The experimental results are plausible and in accordance with the developed theories. By repeating these experiments, the applicability of SP2E for damage localization is experimentally proven. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2018,5 KW - Strukturmechanik KW - Schätztheorie Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20180730-37728 ER - TY - THES A1 - Zabel, Volkmar ED - Könke, Carsten ED - Lahmer, Tom ED - Rabczuk, Timon T1 - Operational modal analysis - Theory and aspects of application in civil engineering N2 - In recent years the demand on dynamic analyses of existing structures in civil engineering has remarkably increased. These analyses are mainly based on numerical models. Accordingly, the generated results depend on the quality of the used models. Therefore it is very important that the models describe the considered systems such that the behaviour of the physical structure is realistically represented. As any model is based on assumptions, there is always a certain degree of uncertainty present in the results of a simulation based on the respective numerical model. To minimise these uncertainties in the prediction of the response of a structure to a certain loading, it has become common practice to update or calibrate the parameters of a numerical model based on observations of the structural behaviour of the respective existing system. The determination of the behaviour of an existing structure requires experimental investigations. If the numerical analyses concern the dynamic response of a structure it is sensible to direct the experimental investigations towards the identification of the dynamic structural behaviour which is determined by the modal parameters of the system. In consequence, several methods for the experimental identification of modal parameters have been developed since the 1980ies. Due to various technical restraints in civil engineering which limit the possibilities to excitate a structure with economically reasonable effort, several methods have been developed that allow a modal identification form tests with an ambient excitation. The approach of identifying modal parameters only from measurements of the structural response without precise knowledge of the excitation is known as output-only or operational modal analysis. Since operational modal analysis (OMA) can be considered as a link between numerical modelling and simulation on the one hand and the dynamic behaviour of an existing structure on the other hand, the respective algorithms connect both the concepts of structural dynamics and mathematical tools applied within the processing of experimental data. Accordingly, the related theoretical topics are revised after an introduction into the topic. Several OMA methods have been developed over the last decades. The most established algorithms are presented here and their application is illustrated by means of both a small numerical and an experimental example. Since experimentally obtained results always underly manifold influences, an appropriate postprocessing of the results is necessary for a respective quality assessment. This quality assessment does not only require respective indicators but should also include the quantification of uncertainties. One special feature in modal testing is that it is common to instrument the structure in different sensor setups to improve the spacial resolution of identified mode shapes. The modal information identified from tests in several setups needs to be merged a posteriori. Algorithms to cope with this problem are also presented. Due to the fact that the amount of data generated in modal tests can become very large, manual processing can become extremely expensive or even impossible, for example in the case of a long-term continuous structural monitoring. In these situations an automated analysis and postprocessing are essential. Descriptions of respective methodologies are therefore also included in this work. Every structural system in civil engineering is unique and so also every identification of modal parameters has its specific challenges. Some aspects that can be faced in practical applications of operational modal analysis are presented and discussed in a chapter that is dedicated specific problems that an analyst may have to overcome. Case studies of systems with very close modes, with limited accessibility as well as the application of different OMA methods are described and discussed. In this context the focus is put on several types of uncertainty that may occur in the multiple stages of an operational modal analysis. In literature only very specific uncertainties at certain stages of the analysis are addressed. Here, the topic of uncertainties has been considered in a broader sense and approaches for treating respective problems are suggested. Eventually, it is concluded that the methodologies of operatinal modal analysis and related technical solutions have been well-engineered already. However, as in any discipline that includes experiments, a certain degree of uncertainty always remains in the results. From these conclusions has been derived a demand for further research and development that should be directed towards the minimisation of these uncertainties and to a respective optimisation of the steps and corresponding parameters included in an operational modal analysis. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2019,5 KW - Modalanalyse KW - Strukturdynamik KW - Operational modal analysis KW - modal analysis KW - structural dynamics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20191030-40061 ER - TY - THES A1 - Schwedler, Michael T1 - Untersuchungen adaptiver Modellanpassungen für Probleme dynamischer Bauwerks-Bodeninteraktion T1 - Study on adaptive model customization for dynamic soil structure interaction problems N2 - Die Eigenschaften des Baugrunds können das dynamische Verhalten eines Bauwerks in erheblichem Maße beeinflussen. Um daraus resultierende Veränderungen der Tragwerksbeanspruchung ermitteln zu können, muss der Boden in den Berechnungsmodellen zur Bestimmung der Tragwerksbeanspruchung berücksichtigt werden. Die möglichen Modellierungsvarianten unterscheiden sich in ihrer Komplexität erheblich. Im Rahmen dieser Arbeit wird das dynamische Verhalten eines konkreten Bauwerks, der Millikan Library, an einem numerischen Modell untersucht. Während das Partialmodell Bauwerk während der Untersuchungen unverändert bleibt, werden für den Boden verschiedene Modellierungsvarianten verwendet. Allen Bodenmodellen gemein ist, dass sie auf einfachen, gekoppelten Feder-Dämpferelementen beruhen. Die mit den unterschiedlichen Modellierungsvarianten des Bodens erzielten Ergebnisse werden einander gegenüber gestellt und mit dem, im Rahmen anderer Arbeiten experimentell bestimmten, dynamischen Verhalten des untersuchten Bauwerks verglichen. KW - Boden-Bauwerk-Wechselwirkung KW - Millikan Library KW - Feder-Dämpfer Bodenmodelle KW - soil-structure interaction KW - Millikan Library KW - spring-dashpot soil models Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20091022-14896 ER -