TY - JOUR A1 - Alkam, Feras A1 - Lahmer, Tom T1 - A robust method of the status monitoring of catenary poles installed along high-speed electrified train tracks JF - Results in Engineering N2 - Electric trains are considered one of the most eco-friendly and safest means of transportation. Catenary poles are used worldwide to support overhead power lines for electric trains. The performance of the catenary poles has an extensive influence on the integrity of the train systems and, consequently, the connected human services. It became a must nowadays to develop SHM systems that provide the instantaneous status of catenary poles in- service, making the decision-making processes to keep or repair the damaged poles more feasible. This study develops a data-driven, model-free approach for status monitoring of cantilever structures, focusing on pre-stressed, spun-cast ultrahigh-strength concrete catenary poles installed along high-speed train tracks. The pro-posed approach evaluates multiple damage features in an unfied damage index, which leads to straightforward interpretation and comparison of the output. Besides, it distinguishes between multiple damage scenarios of the poles, either the ones caused by material degradation of the concrete or by the cracks that can be propagated during the life span of the given structure. Moreover, using a logistic function to classify the integrity of structure avoids the expensive learning step in the existing damage detection approaches, namely, using the modern machine and deep learning methods. The findings of this study look very promising when applied to other types of cantilever structures, such as the poles that support the power transmission lines, antenna masts, chimneys, and wind turbines. KW - Fahrleitung KW - Catenary poles KW - SHM KW - Model-free status monitoring KW - Sigmoid function KW - High-speed electric train KW - Schaden KW - OA-Publikationsfonds2021 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20211011-45212 UR - https://www.sciencedirect.com/science/article/pii/S2590123021000906?via%3Dihub VL - 2021 IS - volume 12, article 100289 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Ashour, Mohammed T1 - Electromechanics and Hydrodynamics of Single Vesicles and Vesicle Doublet Using Phase-Field Isogeometric Analysis N2 - Biomembranes are selectively permeable barriers that separate the internal components of the cell from its surroundings. They have remarkable mechanical behavior which is characterized by many phenomena, but most noticeably their fluid-like in-plane behavior and solid-like out-of-plane behavior. Vesicles have been studied in the context of discrete models, such as Molecular Dynamics, Monte Carlo methods, Dissipative Particle Dynamics, and Brownian Dynamics. Those methods, however, tend to have high computational costs, which limited their uses for studying atomistic details. In order to broaden the scope of this research, we resort to the continuum models, where the atomistic details of the vesicles are neglected, and the focus shifts to the overall morphological evolution. Under the umbrella of continuum models, vesicles morphology has been studied extensively. However, most of those studies were limited to the mechanical response of vesicles by considering only the bending energy and aiming for the solution by minimizing the total energy of the system. Most of the literature is divided between two geometrical representation methods; the sharp interface methods and the diffusive interface methods. Both of those methods track the boundaries and interfaces implicitly. In this research, we focus our attention on solving two non-trivial problems. In the first one, we study a constrained Willmore problem coupled with an electrical field, and in the second one, we investigate the hydrodynamics of a vesicle doublet suspended in an external viscous fluid flow. For the first problem, we solve a constrained Willmore problem coupled with an electrical field using isogeometric analysis to study the morphological evolution of vesicles subjected to static electrical fields. The model comprises two phases, the lipid bilayer, and the electrolyte. This two-phase problem is modeled using the phase-field method, which is a subclass of the diffusive interface methods mentioned earlier. The bending, flexoelectric, and dielectric energies of the model are reformulated using the phase-field parameter. A modified Augmented-Lagrangian (ALM) approach was used to satisfy the constraints while maintaining numerical stability and a relatively large time step. This approach guarantees the satisfaction of the constraints at each time step over the entire temporal domain. In the second problem, we study the hydrodynamics of vesicle doublet suspended in an external viscous fluid flow. Vesicles in this part of the research are also modeled using the phase-field model. The bending energy and energies associated with enforcing the global volume and area are considered. In addition, the local inextensibility condition is ensured by introducing an additional equation to the system. To prevent the vesicles from numerically overlapping, we deploy an interaction energy definition to maintain a short-range repulsion between the vesicles. The fluid flow is modeled using the incompressible Navier-Stokes equations and the vesicle evolution in time is modeled using two advection equations describing the process of advecting each vesicle by the fluid flow. To overcome the velocity-pressure saddle point system, we apply the Residual-Based Variational MultiScale (RBVMS) method to the Navier-Stokes equations and solve the coupled systems using isogeometric analysis. We study vesicle doublet hydrodynamics in shear flow, planar extensional flow, and parabolic flow under various configurations and boundary conditions. The results reveal several interesting points about the electrodynamics and hydrodynamics responses of single vesicles and vesicle doublets. But first, it can be seen that isogeometric analysis as a numerical tool has the ability to model and solve 4th-order PDEs in a primal variational framework at extreme efficiency and accuracy due to the abilities embedded within the NURBS functions without the need to reduce the order of the PDE by creating an intermediate environment. Refinement whether by knot insertion, order increasing or both is far easier to obtain than traditional mesh-based methods. Given the wide variety of phenomena in natural sciences and engineering that are mathematically modeled by high-order PDEs, the isogeometric analysis is among the most robust methods to address such problems as the basis functions can easily attain high global continuity. On the applicational side, we study the vesicle morphological evolution based on the electromechanical liquid-crystal model in 3D settings. This model describing the evolution of vesicles is composed of time-dependent, highly nonlinear, high-order PDEs, which are nontrivial to solve. Solving this problem requires robust numerical methods, such as isogeometric analysis. We concluded that the vesicle tends to deform under increasing magnitudes of electric fields from the original sphere shape to an oblate-like shape. This evolution is affected by many factors and requires fine-tuning of several parameters, mainly the regularization parameter which controls the thickness of the diffusive interface width. But it is most affected by the method used for enforcing the constraints. The penalty method in presence of an electrical field tends to lock on the initial phase-field and prevent any evolution while a modified version of the ALM has proven to be sufficiently stable and accurate to let the phase-field evolve while satisfying the constraints over time at each time step. We show additionally the effect of including the flexoelectric nature of the Biomembranes in the computation and how it affects the shape evolution as well as the effect of having different conductivity ratios. All the examples were solved based on a staggered scheme, which reduces the computational cost significantly. For the second part of the research, we consider vesicle doublet suspended in a shear flow, in a planar extensional flow, and in a parabolic flow. When the vesicle doublet is suspended in a shear flow, it can either slip past each other or slide on top of each other based on the value of the vertical displacement, that is the vertical distance between the center of masses between the two vesicles, and the velocity profile applied. When the vesicle doublet is suspended in a planar extensional flow in a configuration that resembles a junction, the time in which both vesicles separate depends largely on the value of the vertical displacement after displacing as much fluid from between the two vesicles. However, when the vesicles are suspended in a tubular channel with a parabolic fluid flow, they develop a parachute-like shape upon converging towards each other before exiting the computational domain from the predetermined outlets. This shape however is affected largely by the height of the tubular channel in which the vesicle is suspended. The velocity essential boundary conditions are imposed weakly and strongly. The weak implementation of the boundary conditions was used when the velocity profile was defined on the entire boundary, while the strong implementation was used when the velocity profile was defined on a part of the boundary. The strong implementation of the essential boundary conditions was done by selectively applying it to the predetermined set of elements in a parallel-based code. This allowed us to simulate vesicle hydrodynamics in a computational domain with multiple inlets and outlets. We also investigate the hydrodynamics of oblate-like shape vesicles in a parabolic flow. This work has been done in 2D configuration because of the immense computational load resulting from a large number of degrees of freedom, but we are actively seeking to expand it to 3D settings and test a broader set of parameters and geometrical configurations. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2023,1 KW - Isogeometrische Analyse KW - Phasenfeldanalyse KW - Vesikel KW - Hydrodynamik KW - Isogeometric Analysis KW - Phase-Field KW - Vesicles Electromechanics KW - Vesicle Hydrodynamics KW - Vesicle Doublet KW - Elektromechanik KW - Vesikel-Doublette KW - Vesikel Hydrodynamik KW - Vesikel Elektromechanik Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230628-64003 ER - TY - THES A1 - Chawdhury, Samir T1 - Partitioned Algorithms using Vortex Particle Methods for Fluid−Structure Interaction of Thin-walled Flexible Structures N2 - Structures under wind action can exhibit various aeroelastic interaction phenomena, which can lead to destructive and catastrophic events. Such unstable interaction can be beneficially used for small-scale aeroelastic energy harvesting. Proper understanding and prediction of fluid−structure interactions (FSI) phenomena are therefore crucial in many engineering fields. This research intends to develop coupled FSI models to extend the applicability of Vortex Particle Methods (VPM) for numerically analysing the complex FSI of thin-walled flexible structures under steady and fluctuating incoming flows. In this context, the flow around deforming thin bodies is analysed using the two-dimensional and pseudo-three-dimensional implementations of VPM. The structural behaviour is modelled and analysed using the Finite Element Method. The partitioned coupling approach is considered because of the flexibility of using different mathematical procedures for solving fluid and solid mechanics. The developed coupled models are validated with several benchmark FSI problems in the literature. Finally, the models are applied to several fundamental and application field of FSI problems of different thin-walled flexible structures irrespective of their size. T3 - Schriftenreihe des Instituts für Konstruktiven Ingenieurbau - 37 KW - Windenergie KW - Numerisches Verfahren KW - Energieerzeugung KW - Computational wind engineering KW - Aeroelastic instabilities KW - Coupled numerical methods KW - Thin-walled structures KW - Aeroelastic energy harvesting Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230703-64042 UR - https://asw-verlage.de/katalog/partitioned_algorithms_using_vor-2372.html SN - 978-3-95773-297-2 PB - arts + science weimar GmbH CY - Weimar ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Lahmer, Tom T1 - Improved Rapid Visual Earthquake Hazard Safety Evaluation of Existing Buildings Using a Type-2 Fuzzy Logic Model JF - Applied Sciences N2 - Rapid Visual Screening (RVS) is a procedure that estimates structural scores for buildings and prioritizes their retrofit and upgrade requirements. Despite the speed and simplicity of RVS, many of the collected parameters are non-commensurable and include subjectivity due to visual observations. This might cause uncertainties in the evaluation, which emphasizes the use of a fuzzy-based method. This study aims to propose a novel RVS methodology based on the interval type-2 fuzzy logic system (IT2FLS) to set the priority of vulnerable building to undergo detailed assessment while covering uncertainties and minimizing their effects during evaluation. The proposed method estimates the vulnerability of a building, in terms of Damage Index, considering the number of stories, age of building, plan irregularity, vertical irregularity, building quality, and peak ground velocity, as inputs with a single output variable. Applicability of the proposed method has been investigated using a post-earthquake damage database of reinforced concrete buildings from the Bingöl and Düzce earthquakes in Turkey. KW - Fuzzy-Logik KW - Erdbeben KW - Fuzzy Logic KW - Rapid Visual Screening KW - Vulnerability assessment KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200331-41161 UR - https://www.mdpi.com/2076-3417/10/7/2375 VL - 2020 IS - Volume 10, Issue 3, 2375 PB - MDPI CY - Basel ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Lahmer, Tom A1 - Rasulzade, Shahla T1 - Earthquake Hazard Safety Assessment of Existing Buildings Using Optimized Multi-Layer Perceptron Neural Network JF - Energies N2 - The latest earthquakes have proven that several existing buildings, particularly in developing countries, are not secured from damages of earthquake. A variety of statistical and machine-learning approaches have been proposed to identify vulnerable buildings for the prioritization of retrofitting. The present work aims to investigate earthquake susceptibility through the combination of six building performance variables that can be used to obtain an optimal prediction of the damage state of reinforced concrete buildings using artificial neural network (ANN). In this regard, a multi-layer perceptron network is trained and optimized using a database of 484 damaged buildings from the Düzce earthquake in Turkey. The results demonstrate the feasibility and effectiveness of the selected ANN approach to classify concrete structural damage that can be used as a preliminary assessment technique to identify vulnerable buildings in disaster risk-management programs. KW - Erdbeben KW - Maschinelles Lernen KW - earthquake damage KW - seismic vulnerability KW - artificial neural network KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200504-41575 UR - https://www.mdpi.com/1996-1073/13/8/2060/htm VL - 2020 IS - Volume 13, Issue 8, 2060 PB - MDPI CY - Basel ER - TY - THES A1 - Held, Tobias T1 - Einblick: Gestalterische Potentiale und Perspektiven der Videotelefonie im Kontext von Nähe und Distanz. Eine praxis-basierte, (re-)kontextualisierende und diskursanalytische Studie. N2 - Inhaltlich beschäftigt sich die Arbeit, die im Rahmen des Promotionsstudiengangs Kunst und Gestaltung an der Bauhaus-Universität entstand, mit der Erforschung sozio-interaktiver Potentiale der Videotelefonie im Kontext von Nähe und Verbundenheit mit Fokus auf Eigenbild, Embodiment sowie den Rederechtswechsel. Die Videotelefonie als Kommunikationsform hat sich – und darauf deuten die Erfahrungen der Co- vid-19-Pandemie hin – im lebensweltlichen Alltag der Menschen etabliert und wird dort in naher Zukunft nicht mehr wegzudenken sein. Auf Basis ihrer Möglichkeiten und Errungenschaften ist es inzwischen Realität und Lebenswirklichkeit, dass die Kommunikation sowohl im privaten als auch im geschäftlichen Kontext mittels verschiedenster Kanäle stattfindet. Der Videotelefonie kommt hierbei als solche nicht nur eine tragende Funktion, sondern auch eine herausragende Rolle bei der vermeintlichen Reproduktion der Face-to-Face-Kommunikation im digitalen Raum zu und wird wie selbstverständlich zum zwischenmenschlichen Austausch genutzt. Just an diesem Punkt knüpft die Forschungsarbeit an. Zentral stand dabei das Vorhaben einer dezidierte Untersuchung des Forschungsgegenstandes Videotelefonie, sowohl aus Kultur- als auch Technikhistorischer, aber auch Medien-, Wahrnehmungs- wie Kommunikations- theoretischer Perspektive, indem analytische und phänosemiotische Perspektiven miteinander in Beziehung gesetzt werden (z.B. Wahrnehmungsbedingungen, Interaktionsmerkmale, realisierte Kommunikationsprozesse etc.). Damit verbundenes, wünschenswertes Ziel war es, eine möglichst zeitgemäße wie relevante Forschungsfrage zu adressieren, die neben den kulturellen Technisierungs- und Mediatisierungstendenzen in institutionellen und privaten Milieus ebenfalls eine conditio sine qua non der pandemischen (Massen-)Kommunikation entwirft. Die Arbeit ist damit vor allem im Bereich des Produkt- und Interactiondesigns zu verorten. Darüber hinaus hatte sie das Ziel der Darlegung und Begründung der Videotelefonie als eigenständige Kommunikationsform, welche durch eigene, kommunikative Besonderheiten, die sich in ihrer jeweiligen Ingebrauchnahme sowie durch spezielle Wahrnehmungsbedingungen äußern, und die die Videotelefonie als »Rederechtswechselmedium« avant la lettre konsolidieren, gekennzeichnet ist. Dabei sollte der Beweis erbracht werden, dass die Videotelefonie nicht als Schwundstufe einer Kommunikation Face-to-Face, sondern als ein eigenständiges Mediatisierungs- und Kommunikationsereignis zu verstehen sei. Und eben nicht als eine beliebige – sich linear vom Telefon ausgehende – entwickelte Form der audio-visuellen Fernkommunikation darstellt, sondern die gestalterische (Bewegtbild-)Technizität ein eigenständiges Funktionsmaß offeriert, welches wiederum ein innovatives Kommunikationsmilieu im Kontext einer Rederechtswechsel-Medialität stabilisiert. KW - Videotelefonie KW - Designforschung KW - Medienforschung KW - Videokonferenz KW - videochat KW - videocall KW - videoconference Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230111-48867 ER - TY - THES A1 - Herrmann, Annemarie T1 - Investigation of buckling behavior of carbon fiber-reinforced composite shell structures with openings N2 - Thin-walled cylindrical composite shell structures are often applied in aerospace for lighter and cheaper launcher transport system. These structures exhibit sensitivity to geometrical imperfection and are prone to buckling under axial compression. Today the design is based on NASA guidelines from the 1960’s [1] using a conservative lower bound curve embodying many experimental results of that time. It is well known that the advantages and different characteristics of composites as well as the evolution of manufacturing standards are not considered apporopriately in this outdated approach. The DESICOS project was initiated to provide new design guidelines regarding all the advantages of composites and allow further weight reduction of space structures by guaranteeing a more precise and robust design. Therefore it is necessary among other things to understand how a cutout with different dimensions affects the buckling load of a thin-walled cylindrical shell structure in combination with initial geometric imperfections. This work is intended to identify a ratio between the cutout characteristic dimension (in this case the cutout diameter) and the structure characteristic dimension (in this case the cylinder radius) that can be used to tell if the buckling structure is dominated by initial imperfections or is dominated by the cutout. KW - buckling KW - composite KW - Abaqus KW - cylindrical shell structures Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130107-18129 UR - www.desicos.eu ER - TY - THES A1 - Häfner, Stefan T1 - Grid-based procedures for the mechanical analysis of heterogeneous solids N2 - The importance of modern simulation methods in the mechanical analysis of heterogeneous solids is presented in detail. Thereby the problem is noted that even for small bodies the required high-resolution analysis reaches the limits of today's computational power, in terms of memory demand as well as acceptable computational effort. A further problem is that frequently the accuracy of geometrical modelling of heterogeneous bodies is inadequate. The present work introduces a systematic combination and adaption of grid-based methods for achieving an essentially higher resolution in the numerical analysis of heterogeneous solids. Grid-based methods are as well primely suited for developing efficient and numerically stable algorithms for flexible geometrical modeling. A key aspect is the uniform data management for a grid, which can be utilized to reduce the effort and complexity of almost all concerned methods. A new finite element program, called Mulgrido, was just developed to realize this concept consistently and to test the proposed methods. Several disadvantages which generally result from grid discretizations are selectively corrected by modified methods. The present work is structured into a geometrical model, a mechanical model and a numerical model. The geometrical model includes digital image-based modeling and in particular several methods for the theory-based generation of inclusion-matrix models. Essential contributions refer to variable shape, size distribution, separation checks and placement procedures of inclusions. The mechanical model prepares the fundamentals of continuum mechanics, homogenization and damage modeling for the following numerical methods. The first topic of the numerical model introduces to a special version of B-spline finite elements. These finite elements are entirely variable in the order k of B-splines. For homogeneous bodies this means that the approximation quality can arbitrarily be scaled. In addition, the multiphase finite element concept in combination with transition zones along material interfaces yields a valuable solution for heterogeneous bodies. As the formulation is element-based, the storage of a global stiffness matrix is superseded such that the memory demand can essentially be reduced. This is possible in combination with iterative solver methods which represent the second topic of the numerical model. Here, the focus lies on multigrid methods where the number of required operations to solve a linear equation system only increases linearly with problem size. Moreover, for badly conditioned problems quite an essential improvement is achieved by preconditioning. The third part of the numerical model discusses certain aspects of damage simulation which are closely related to the proposed grid discretization. The strong efficiency of the linear analysis can be maintained for damage simulation. This is achieved by a damage-controlled sequentially linear iteration scheme. Finally a study on the effective material behavior of heterogeneous bodies is presented. Especially the influence of inclusion shapes is examined. By means of altogether more than one hundred thousand random geometrical arrangements, the effective material behavior is statistically analyzed and assessed. N2 - Die wichtige Bedeutung moderner Simulationsverfahren in der mechanischen Analyse heterogener Festkörper wird eingangs ausführlich dargestellt. Dabei wird als Problem festgestellt, dass die erforderliche hochauflösende Analyse bereits für relativ kleine Körper an die Grenzen heutiger Rechenleistung stößt, sowohl bezüglich Speicherbedarf als auch akzeptablen Rechenaufwands. Ein weiteres Problem stellt die häufig unzureichend genaue geometrische Modellierung der Zusammensetzung heterogener Körper dar. Die vorliegende Arbeit führt eine systematische Kombination und Anpassung von gitterbasierten Methoden ein, um dadurch eine wesentlich höhere Auflösung in der numerischen Analyse heterogener Körper zu erzielen. Gitterverfahren eignen sich ebenfalls ausgezeichnet, um effiziente und numerisch stabile Algorithmen zur flexiblen geometrischen Modellierung zu entwickeln. Ein Schlüsselaspekt stellt ein gleichmäßiges Datenmanagement für Gitter dar, welches dafür eingesetzt werden kann, um den Aufwand und die Komplexität von nahezu allen beteiligten Methoden zu reduzieren. Ein neues Finite-Elemente Programm, namens Mulgrido, wurde eigens dafür entwickelt, um das vorgeschlagene Konzept konsistent zu realisieren und zu untersuchen. Einige Nachteile, die sich klassischerweise aus Gitterdiskretisierungen ergeben, werden gezielt durch modifizierte Verfahren korrigiert. Die gegenwärtige Arbeit gliedert sich in ein geometrisches Modell, ein mechanisches Modell und ein numerisches Modell. Das geometrische Modell beinhaltet neben Methoden der digitalen Bildverarbeitung, insbesondere sämtliche Verfahren zur künstlichen Generierung von Einschluss-Matrix Geometrien. Wesentliche Beiträge werden bezüglich variabler Form, Größenverteilung, Überschneidungsabfragen und Platzierung von Einschlüssen geleistet. Das mechanische Modell bereitet durch Grundlagen der Kontinuumsmechanik, der Homogenisierung und der Schädigungsmodellierung auf eine numerische Umsetzung vor. Als erstes Thema des numerischen Modells wird eine besondere Umsetzung von B-Spline Finiten Elementen vorgestellt. Diese Finite Elemente können generisch für eine beliebige Ordnung k der B-Splines erzeugt werden. Für homogene Körper verfügen diese somit über beliebig skalierbare Approximationseigenschaften. Mittels des Konzepts mehrphasiger Finite Elemente in Kombination mit Übergangszonen entlang von Materialgrenzen gelingt eine hochwertige Erweiterung für heterogene Körper. Durch die Formulierung auf Elementebene, kann die Speicherung der globalen Steifigkeitsmatrix und somit wesentlicher Speicherplatz eingespart werden. Dies ist möglich in Kombination mit iterativen Lösungsverfahren, die das zweite Thema des numerischen Modells darstellen. Dabei liegt der Fokus auf Mehrgitterverfahren. Diese zeichnen sich dadurch aus, dass die Anzahl der erforderlichen Operationen um ein lineares Gleichungssystem zu lösen, nur linear mit der Problemgröße ansteigt. Durch Vorkonditionierung wird für schlecht konditionierte Probleme eine ganz wesentliche Verbesserung erreicht. Als drittes Thema des numerischen Modells werden Aspekte der Schädigungssimulation diskutiert, die in engem Zusammenhang mit der Gitterdiskretisierung stehen. Die hohe Effizienz der linearen Analyse kann durch ein schädigungskontrolliertes, schrittweise lineares Iterationsschema für die Schädigungsanalyse aufrecht erhalten werden. Abschließend wird eine Studie über das effektive Materialverhalten heterogener Körper vorgestellt. Insbesondere wird der Einfluss der Form von Einschlüssen untersucht. Mittels insgesamt weit über hunderttausend zufälliger geometrischer Anordnungen wird das effektive Materialverhalten statistisch analysiert und bewertet. T2 - Gitterbasierte Verfahren zur mechanischen Analyse heterogener Festkörper KW - B-Spline KW - Finite-Elemente-Methode KW - Mehrgitterverfahren KW - Homogenisieren KW - Schädigung KW - Festkörpermechanik KW - Numerische Mathematik KW - B-Spline Finite Elemente KW - Homogenisierung KW - mehrphasig KW - Lösungsverfahren KW - Modellierung KW - B-spline KW - finite element KW - multigrid KW - multiphase KW - effective properties Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20070830-9185 ER - TY - THES A1 - López Zermeño, Jorge Alberto T1 - Isogeometric and CAD-based methods for shape and topology optimization: Sensitivity analysis, Bézier elements and phase-field approaches N2 - The Finite Element Method (FEM) is widely used in engineering for solving Partial Differential Equations (PDEs) over complex geometries. To this end, it is required to provide the FEM software with a geometric model that is typically constructed in a Computer-Aided Design (CAD) software. However, FEM and CAD use different approaches for the mathematical description of the geometry. Thus, it is required to generate a mesh, which is suitable for FEM, based on the CAD model. Nonetheless, this procedure is not a trivial task and it can be time consuming. This issue becomes more significant for solving shape and topology optimization problems, which consist in evolving the geometry iteratively. Therefore, the computational cost associated to the mesh generation process is increased exponentially for this type of applications. The main goal of this work is to investigate the integration of CAD and CAE in shape and topology optimization. To this end, numerical tools that close the gap between design and analysis are presented. The specific objectives of this work are listed below: • Automatize the sensitivity analysis in an isogeometric framework for applications in shape optimization. Applications for linear elasticity are considered. • A methodology is developed for providing a direct link between the CAD model and the analysis mesh. In consequence, the sensitivity analysis can be performed in terms of the design variables located in the design model. • The last objective is to develop an isogeometric method for shape and topological optimization. This method should take advantage of using Non-Uniform Rational B-Splines (NURBS) with higher continuity as basis functions. Isogeometric Analysis (IGA) is a framework designed to integrate the design and analysis in engineering problems. The fundamental idea of IGA is to use the same basis functions for modeling the geometry, usually NURBS, for the approximation of the solution fields. The advantage of integrating design and analysis is two-fold. First, the analysis stage is more accurate since the system of PDEs is not solved using an approximated geometry, but the exact CAD model. Moreover, providing a direct link between the design and analysis discretizations makes possible the implementation of efficient sensitivity analysis methods. Second, the computational time is significantly reduced because the mesh generation process can be avoided. Sensitivity analysis is essential for solving optimization problems when gradient-based optimization algorithms are employed. Automatic differentiation can compute exact gradients, automatically by tracking the algebraic operations performed on the design variables. For the automation of the sensitivity analysis, an isogeometric framework is used. Here, the analysis mesh is obtained after carrying out successive refinements, while retaining the coarse geometry for the domain design. An automatic differentiation (AD) toolbox is used to perform the sensitivity analysis. The AD toolbox takes the code for computing the objective and constraint functions as input. Then, using a source code transformation approach, it outputs a code for computing the objective and constraint functions, and their sensitivities as well. The sensitivities obtained from the sensitivity propagation method are compared with analytical sensitivities, which are computed using a full isogeometric approach. The computational efficiency of AD is comparable to that of analytical sensitivities. However, the memory requirements are larger for AD. Therefore, AD is preferable if the memory requirements are satisfied. Automatic sensitivity analysis demonstrates its practicality since it simplifies the work of engineers and designers. Complex geometries with sharp edges and/or holes cannot easily be described with NURBS. One solution is the use of unstructured meshes. Simplex-elements (triangles and tetrahedra for two and three dimensions respectively) are particularly useful since they can automatically parameterize a wide variety of domains. In this regard, unstructured Bézier elements, commonly used in CAD, can be employed for the exact modelling of CAD boundary representations. In two dimensions, the domain enclosed by NURBS curves is parameterized with Bézier triangles. To describe exactly the boundary of a two-dimensional CAD model, the continuity of a NURBS boundary representation is reduced to C^0. Then, the control points are used to generate a triangulation such that the boundary of the domain is identical to the initial CAD boundary representation. Thus, a direct link between the design and analysis discretizations is provided and the sensitivities can be propagated to the design domain. In three dimensions, the initial CAD boundary representation is given as a collection of NURBS surfaces that enclose a volume. Using a mesh generator (Gmsh), a tetrahedral mesh is obtained. The original surface is reconstructed by modifying the location of the control points of the tetrahedral mesh using Bézier tetrahedral elements and a point inversion algorithm. This method offers the possibility of computing the sensitivity analysis using the analysis mesh. Then, the sensitivities can be propagated into the design discretization. To reuse the mesh originally generated, a moving Bézier tetrahedral mesh approach was implemented. A gradient-based optimization algorithm is employed together with a sensitivity propagation procedure for the shape optimization cases. The proposed shape optimization approaches are used to solve some standard benchmark problems in structural mechanics. The results obtained show that the proposed approach can compute accurate gradients and evolve the geometry towards optimal solutions. In three dimensions, the moving mesh approach results in faster convergence in terms of computational time and avoids remeshing at each optimization step. For considering topological changes in a CAD-based framework, an isogeometric phase-field based shape and topology optimization is developed. In this case, the diffuse interface of a phase-field variable over a design domain implicitly describes the boundaries of the geometry. The design variables are the local values of the phase-field variable. The descent direction to minimize the objective function is found by using the sensitivities of the objective function with respect to the design variables. The evolution of the phase-field is determined by solving the time dependent Allen-Cahn equation. Especially for topology optimization problems that require C^1 continuity, such as for flexoelectric structures, the isogeometric phase field method is of great advantage. NURBS can achieve the desired continuity more efficiently than the traditional employed functions. The robustness of the method is demonstrated when applied to different geometries, boundary conditions, and material configurations. The applications illustrate that compared to piezoelectricity, the electrical performance of flexoelectric microbeams is larger under bending. In contrast, the electrical power for a structure under compression becomes larger with piezoelectricity. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2022,4 KW - CAD KW - Gestaltoptimierung KW - Topologieoptimierung KW - Isogeometrische Analyse KW - Finite-Elemente-Methode KW - Computer-Aided Design KW - Shape Optimization KW - Topology Optimization KW - Isogeometric Analysis KW - Finite Element Method Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220831-47102 ER - TY - THES A1 - Mthunzi, Everett T1 - Interactive Surface Environments: Design and Implementation N2 - This dissertation presents three studies on the design and implementation of interactive surface environments. It puts forward approaches to engineering interactive surface prototypes using prevailing methodologies and technologies. The scholarly findings from each study have been condensed into academic manuscripts, which are conferred herewith. The first study identifies a communication gap between engineers of interactive surface systems (i.e., originators of concepts) and future developers. To bridge the gap, it explores a UML-based framework to establish a formal syntax for modeling hardware, middleware, and software of interactive surface prototypes. The proposed framework targets models-as-end-products, towards enabling a shared view of research prototypes thereby facilitating dialogue between concept originators and future developers. The second study positions itself to support developers with an open-source solution for exploiting 3D point clouds for interactive tabletop applications using CPU architectures. Given dense 3D point-cloud representations of tabletop environments, the study aims toward mitigating high computational effort by segmenting candidate interaction regions as a preprocessing step. The study contributes a robust open-source solution for reducing computational costs when leveraging 3D point clouds for interactive tabletop applications. The solution itself is flexible and adaptable to variable interactive surface applications. The third study contributes an archetypal concept for integrating mobile devices as active components in augmented tabletop surfaces. With emphasis on transparent development trails, the study demonstrates the utility of the open-source tool developed in the second study. In addition to leveraging 3D point clouds for real-time interaction, the research considers recent advances in computer vision and wireless communication to realize a modern, interactive tabletop application. A robust strategy that combines spatial augmented reality, point-cloud-based depth perception, CNN-based object detection, and Bluetooth communication is put forward. In addition to seamless communication between adhoc mobile devices and interactive tabletop systems, the archetypal concept demonstrates the benefits of preprocessing point clouds by segmenting candidate interaction regions, as suggested in the second study. Collectively, the studies presented in this dissertation contribute; 1—bridging the gap between originators of interactive surface concepts and future developers, 2— promoting the exploration of 3D point clouds for interactive surface applications using CPU-based architectures, and 3—leveraging 3D point clouds together with emerging CNN-based object detection, and Bluetooth communication technologies to advance existing surface interaction concepts. KW - Mensch-Maschiene-Kommunikation KW - Human-machine communication Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230704-64065 ER -