TY - THES A1 - Springer, Jan P. T1 - Multi-Frame Rate Rendering N2 - Multi-frame rate rendering is a parallel rendering technique that renders interactive parts of a scene on one graphics card while the rest of the scene is rendered asynchronously on a second graphics card. The resulting color and depth images of both render processes are composited, by optical superposition or digital composition, and displayed. The results of a user study confirm that multi-frame rate rendering can significantly improve the interaction performance. Multi-frame rate rendering is naturally implemented on a graphics cluster. With the recent availability of multiple graphics cards in standalone systems the method can also be implemented on a single computer system where memory bandwidth is much higher compared to off-the-shelf networking technology. This decreases overall latency and further improves interactivity. Multi-frame rate rendering was also investigated on a single graphics processor by interleaving the rendering streams for the interactive elements and the rest of the scene. This approach enables the use of multi-frame rate rendering on low-end graphics systems such as laptops, mobile phones, and PDAs. Advanced multi-frame rate rendering techniques reduce the limitations of the basic approach. The interactive manipulation of light sources and their parameters affects the entire scene. A multi-GPU deferred shading method is presented that splits the rendering task into a rasterization and lighting pass and assigns the passes to the appropriate image generators such that light manipulations at high frame rates become possible. A parallel volume rendering technique allows the manipulation of objects inside a translucent volume at high frame rates. This approach is useful for example in medical applications, where small probes need to be positioned inside a computed-tomography image. Due to the asynchronous nature of multi-frame rate rendering artifacts may occur during migration of objects from the slow to the fast graphics card, and vice versa. Proper state management allows to almost completely avoid these artifacts. Multi-frame rate rendering significantly improves the interactive manipulation of objects and lighting effects. This leads to a considerable increase of the size for 3D scenes that can be manipulated compared to conventional methods. N2 - Multi-Frame Rate Rendering ist eine parallele Rendertechnik, die interaktive Teile einer Szene auf einer separaten Graphikkarte berechnet. Die Abbildung des Rests der Szene erfolgt asynchron auf einer anderen Graphikkarte. Die resultierenden Farb- und Tiefenbilder beider Darstellungsprozesse werden mittels optischer Überlagerung oder digitaler Komposition kombiniert und angezeigt. Die Ergebnisse einer Nutzerstudie zeigen, daß Multi-Frame Rate Rendering die Interaktion für große Szenen deutlich beschleunigt. Multi-Frame Rate Rendering ist üblicherweise auf einem Graphikcluster zu implementieren. Mit der Verfügbarkeit mehrerer Graphikkarten für Einzelsysteme kann Multi-Frame Rate Rendering auch für diese realisiert werden. Dies ist von Vorteil, da die Speicherbandbreite um ein Vielfaches höher ist als mit üblichen Netzwerktechnologien. Dadurch verringern sich Latenzen, was zu verbesserter Interaktivität führt. Multi-Frame Rate Rendering wurde auch auf Systemen mit einer Graphikkarte untersucht. Die Bildberechnung für den Rest der Szene muss dazu in kleine Portionen aufgeteilt werden. Die Darstellung erfolgt dann alternierend zu den interaktiven Elementen über mehrere Bilder verteilt. Dieser Ansatz erlaubt die Benutzung von Multi-Frame Rate Rendering auf einfachen Graphiksystemen wie Laptops, Mobiltelefonen and PDAs. Fortgeschrittene Multi-Frame Rate Rendering Techniken erweitern die Anwendbarkeit des Ansatzes erheblich. Die interaktive Manipulation von Lichtquellen beeinflußt die ganze Szene. Um diese Art der Interaktion zu unterstützen, wurde eine Multi-GPU Deferred Shading Methode entwickelt. Der Darstellungsvorgang wird dazu in einen Rasterisierungs- und Beleuchtungsschritt zerlegt, die parallel auf den entsprechenden Grafikkarten erfolgen können. Dadurch kann die Beleuchtung mit hohen Bildwiederholraten unabhängig von der geometrischen Komplexität der Szene erfolgen. Außerdem wurde eine parallele Darstellungstechnik für die interaktive Manipulation von Objekten in hochaufgelösten Volumendaten entwickelt. Dadurch lassen sich zum Beispiel virtuelle Instrumente in hochqualitativ dargestellten Computertomographieaufnahmen interaktiv positionieren. Aufgrund der inhärenten Asynchronität der beiden Darstellungsprozesse des Multi-Frame Rate Rendering Ansatzes können Artifakte während der Objektmigration zwischen den Graphikkarten auftreten. Eine intelligente Zustandsverwaltung in Kombination mit Prediktionstechniken kann diese Artifakte fast gänzlich verhindern, so dass Benutzer diese im allgemeinen nicht bemerken. Multi-Frame Rate Rendering beschleunigt die interaktive Manipulation von Objekten und Beleuchtungseffekten deutlich. Dadurch können deutlich umfangreichere virtuelle Szenarien bearbeitet werden als mit konventionellen Methoden. T2 - Multi-Frame Rate Rendering KW - Virtuelle Realität KW - Multi-Frame Rate Rendering KW - Multi-Frame Rate Composition KW - Interaction Fidelity KW - Visual Quality KW - Parallel Rendering Methods Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20081127-14395 ER - TY - THES A1 - Salzmann, Holger T1 - Collaboration in Co-located Automotive Applications N2 - Virtual reality systems offer substantial potential in supporting decision processes based purely on computer-based representations and simulations. The automotive industry is a prime application domain for such technology, since almost all product parts are available as three-dimensional models. The consideration of ergonomic aspects during assembly tasks, the evaluation of humanmachine interfaces in the car interior, design decision meetings as well as customer presentations serve as but a few examples, wherein the benefit of virtual reality technology is obvious. All these tasks require the involvement of a group of people with different expertises. However, current stereoscopic display systems only provide correct 3D-images for a single user, while other users see a more or less distorted virtual model. This is a major reason why these systems still face limited acceptance in the automotive industry. They need to be operated by experts, who have an advanced understanding of the particular interaction techniques and are aware of the limitations and shortcomings of virtual reality technology. The central idea of this thesis is to investigate the utility of stereoscopic multi-user systems for various stages of the car development process. Such systems provide multiple users with individual and perspectively correct stereoscopic images, which are key features and serve as the premise for the appropriate support of collaborative group processes. The focus of the research is on questions related to various aspects of collaboration in multi-viewer systems such as verbal communication, deictic reference, embodiments and collaborative interaction techniques. The results of this endeavor provide scientific evidence that multi-viewer systems improve the usability of VR-applications for various automotive scenarios, wherein co-located group discussions are necessary. The thesis identifies and discusses the requirements for these scenarios as well as the limitations of applying multi-viewer technology in this context. A particularly important gesture in real-world group discussions is referencing an object by pointing with the hand and the accuracy which can be expected in VR is made evident. A novel two-user seating buck is introduced for the evaluation of ergonomics in a car interior and the requirements on avatar representations for users sitting in a car are identified. Collaborative assembly tasks require high precision. The novel concept of a two-user prop significantly increases the quality of such a simulation in a virtual environment and allows ergonomists to study the strain on workers during an assembly sequence. These findings contribute toward an increased acceptance of VR-technology for collaborative development meetings in the automotive industry and other domains. N2 - Virtual-Reality-Systeme sind ein innovatives Instrument, um mit Hilfe computerbasierter Simulationen Entscheidungsprozesse zu unterstützen. Insbesondere in der Automobilbranche spielt diese Technologie eine wichtige Rolle, da heutzutage nahezu alle Fahrzeugteile in 3D konstruiert werden. Im Entwicklungsbereich der Automobilindustrie werden Visualisierungssysteme darüber hinaus bei der Untersuchung ergonomischer Aspekte von Montagevorgängen, bei der Bewertung der Mensch-Maschine-Schnittstelle im Fahrzeuginterieur, bei Designentscheidungen sowie bei Kundenpräsentationen eingesetzt. Diese Entscheidungsrunden bedürfen der Einbindung mehrerer Experten verschiedener Fachbereiche. Derzeit verfügbare stereoskopische Visualisierungssysteme ermöglichen aber nur einem Nutzer eine korrekte Stereosicht, während sich für die anderen Teilnehmer das 3D-Modell verzerrt darstellt. Dieser Nachteil ist ein wesentlicher Grund dafür, dass derartige Systeme bisher nur begrenzt im Automobilbereich anwendbar sind. Der Fokus dieser Dissertation liegt auf der Untersuchung der Anwendbarkeit stereoskopischer Mehrbenutzer-Systeme in verschiedenen Stadien des automobilen Entwicklungsprozesses. Derartige Systeme ermöglichen mehreren Nutzern gleichzeitig eine korrekte Stereosicht, was eine wesentliche Voraussetzung für die Zusammenarbeit in einer Gruppe darstellt. Die zentralen Forschungsfragen beziehen sich dabei auf die Anforderungen von kooperativen Entscheidungsprozessen sowie den daraus resultierenden Aspekten der Interaktion wie verbale Kommunikation, Gesten sowie virtuelle Menschmodelle und Interaktionstechniken zwischen den Nutzern. Die Arbeit belegt, dass stereoskopische Mehrbenutzersysteme die Anwendbarkeit virtueller Techniken im Automobilbereich entscheidend verbessern, da sie eine natürliche Kommunikation zwischen den Nutzern fördern. So ist die Unterstützung natürlicher Gesten beispielsweise ein wichtiger Faktor und es wird dargelegt, welche Genauigkeit beim Zeigen mit der realen Hand auf virtuelle Objekte erwartet werden kann. Darüber hinaus werden Anforderungen an virtuelle Menschmodelle anhand einer Zweibenutzer-Sitzkiste identifiziert und untersucht. Diese Form der Simulation, bei der die Nutzer nebeneinander in einem Fahrzeugmodell sitzen, dient vor allem der Bewertung von Mensch-Maschine-Schnittstellen im Fahrzeuginterieur. Des Weiteren wird das neue Konzept eines Mehrbenutzer-Werkzeugs in die Arbeit mit einbezogen, da hier verdeutlicht wird wie die Simulation von Montagevorgängen in virtuellen Umgebungen mit passivem haptischem Feedback zu ergonomischen Verbesserungen entsprechender Arbeitsvorgänge in der Realität beitragen kann. Diese Konzepte veranschaulichen wie VR-Systeme zur Unterstützung kollaborativer Prozesse in der Automobilbranche und darüber hinaus eingesetzt werden können. T2 - Zusammenarbeit in virtuellen Gruppenszenarien in der automobilen Entwicklung KW - Virtuelle Realität KW - Immersion KW - Simulation KW - Computergraphik KW - Virtual Reality KW - Computer Graphics KW - Interaction Techniques KW - Collaboration Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20100712-15102 ER -