TY - THES A1 - Habtemariam, Abinet Kifle T1 - Generalized Beam Theory for the analysis of thin-walled circular pipe members N2 - The detailed structural analysis of thin-walled circular pipe members often requires the use of a shell or solid-based finite element method. Although these methods provide a very good approximation of the deformations, they require a higher degree of discretization which causes high computational costs. On the other hand, the analysis of thin-walled circular pipe members based on classical beam theories is easy to implement and needs much less computation time, however, they are limited in their ability to approximate the deformations as they cannot consider the deformation of the cross-section. This dissertation focuses on the study of the Generalized Beam Theory (GBT) which is both accurate and efficient in analyzing thin-walled members. This theory is based on the separation of variables in which the displacement field is expressed as a combination of predetermined deformation modes related to the cross-section, and unknown amplitude functions defined on the beam's longitudinal axis. Although the GBT was initially developed for long straight members, through the consideration of complementary deformation modes, which amend the null transverse and shear membrane strain assumptions of the classical GBT, problems involving short members, pipe bends, and geometrical nonlinearity can also be analyzed using GBT. In this dissertation, the GBT formulation for the analysis of these problems is developed and the application and capabilities of the method are illustrated using several numerical examples. Furthermore, the displacement and stress field results of these examples are verified using an equivalent refined shell-based finite element model. The developed static and dynamic GBT formulations for curved thin-walled circular pipes are based on the linear kinematic description of the curved shell theory. In these formulations, the complex problem in pipe bends due to the strong coupling effect of the longitudinal bending, warping and the cross-sectional ovalization is handled precisely through the derivation of the coupling tensors between the considered GBT deformation modes. Similarly, the geometrically nonlinear GBT analysis is formulated for thin-walled circular pipes based on the nonlinear membrane kinematic equations. Here, the initial linear and quadratic stress and displacement tangent stiffness matrices are built using the third and fourth-order GBT deformation mode coupling tensors. Longitudinally, the formulation of the coupled GBT element stiffness and mass matrices are presented using a beam-based finite element formulation. Furthermore, the formulated GBT elements are tested for shear and membrane locking problems and the limitations of the formulations regarding the membrane locking problem are discussed. N2 - Eine detaillierte Strukturanalyse dünnwandiger, kreisförmiger Rohrelemente erfordert oft die Verwendung von Schalenelementen in der Finite Elemente Methode. Diese Methode ermöglicht eine sehr gute Approximation des Verformungszustandes, erfordert jedoch einen hohen Grad der Diskretisierung, welcher wiederum einen hohen Rechenaufwand verursacht. Eine alternative Methode hierzu basiert auf klassischen Balkentheorien, welche eine einfache Modellierung ermöglichen und wesentlich geringeren Rechenaufwand erfordern. Diese weisen jedoch Einschränkungen bei der Approximation von Verformungen auf, da Querschnittsverformungen nicht berücksichtigt werden können. Schwerpunkt dieser Dissertation ist eine Untersuchung der Verallgemeinerten Technischen Biegetheorie (VTB), die sowohl eine genaue als auch eine effiziente Analyse von dünnwandigen Tragwerkselementen ermöglicht. Diese Theorie basiert auf einer Trennung der Variablen, in der das Verschiebungsfeld als eine Kombination von vorbestimmten Verformungsmoden der Querschnitts und unbekannten Amplitudenfunktionen in Längsrichtung ausgedrückt wird. Obwohl die VTB ursprünglich für lange, gerade Elemente entwickelt wurde, können durch die Berücksichtigung komplementärer Verformungsmoden, welche die Null-Annahmen der klassischen VTB für Quer- und Schubmembrandehnung abändern, Probleme mit kurzen Elementen, Rohrbögen und geometrischer Nichtlinearität analysiert werden. In dieser Dissertation wird die VTB-Formulierung für die Analyse dieser Probleme entwickelt. Die Anwendung und Möglichkeiten der Methode werden anhand mehrerer numerischer Beispiele veranschaulicht, deren Verschiebungs- und Spannungsfeldanalysen anhand eines äquivalenten, verfeinerten, schalenbasierten Finite-Elemente-Modells verifiziert werden. Die entwickelten statischen und dynamischen VTB-Formulierungen für Rohrbogenelemente basieren auf der linearen kinematischen Beschreibung der Theorie gekrümmter Schalen. In diesen Formulierungen wird das komplexe Problem in Rohrbögen aufgrund des starken Kopplungseffekts der Längsbiegung, der Verwölbung und der Querschnittsovalisierung durch die Herleitung der Kopplungstensoren zwischen den betrachteten VTB-Verformungsmoden präzise behandelt. In ähnlicher Weise wird die geometrisch nichtlineare VTB-Analyse für gerade Rohrelemente auf der Grundlage der nichtlinearen kinematischen Membrangleichungen formuliert. Die anfänglichen linearen und quadratischen Spannungs- und Verschiebungs-Tangentensteifigkeitsmatrizen werden dabei unter Verwendung der VTB-Kopplungstensoren dritter und vierter Ordnung aufgebaut. In Längsrichtung wird die Formulierung der gekoppelten VTB-Element-Steifigkeits- und Massenmatrizen unter Verwendung einer balkenbasierten Finite-Elemente Formulierung dargestellt. Weiterhin werden die VTB-Elemente auf Schub- und Membran-Locking-Probleme getestet und die Einschränkungen der Formulierungen bezüglich des Membran-Locking-Problems diskutiert. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2022,2 KW - Finite-Elemente-Methode KW - Dynamische Analyse KW - Generalized Beam Theory (GBT) KW - Finite Element Method KW - Dynamic Analysis KW - Geometrically nonlinear analysis KW - Curved thin-walled circular pipes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220127-45723 ER - TY - THES A1 - Salavati, Mohammad T1 - Multi-Scale Modeling of Mechanical and Electrochemical Properties of 1D and 2D Nanomaterials, Application in Battery Energy Storage Systems N2 - Material properties play a critical role in durable products manufacturing. Estimation of the precise characteristics in different scales requires complex and expensive experimental measurements. Potentially, computational methods can provide a platform to determine the fundamental properties before the final experiment. Multi-scale computational modeling leads to the modeling of the various time, and length scales include nano, micro, meso, and macro scales. These scales can be modeled separately or in correlation with coarser scales. Depend on the interested scales modeling, the right selection of multi-scale methods leads to reliable results and affordable computational cost. The present dissertation deals with the problems in various length and time scales using computational methods include density functional theory (DFT), molecular mechanics (MM), molecular dynamics (MD), and finite element (FE) methods. Physical and chemical interactions in lower scales determine the coarser scale properties. Particles interaction modeling and exploring fundamental properties are significant challenges of computational science. Downscale modelings need more computational effort due to a large number of interacted atoms/particles. To deal with this problem and bring up a fine-scale (nano) as a coarse-scale (macro) problem, we extended an atomic-continuum framework. The discrete atomic models solve as a continuum problem using the computationally efficient FE method. MM or force field method based on a set of assumptions approximates a solution on the atomic scale. In this method, atoms and bonds model as a harmonic oscillator with a system of mass and springs. The negative gradient of the potential energy equal to the forces on each atom. In this way, each bond's total potential energy includes bonded, and non-bonded energies are simulated as equivalent structural strain energies. Finally, the chemical nature of the atomic bond is modeled as a piezoelectric beam element that solves by the FE method. Exploring novel materials with unique properties is a demand for various industrial applications. During the last decade, many two-dimensional (2D) materials have been synthesized and shown outstanding properties. Investigation of the probable defects during the formation/fabrication process and studying their strength under severe service life are the critical tasks to explore performance prospects. We studied various defects include nano crack, notch, and point vacancy (Stone-Wales defect) defects employing MD analysis. Classical MD has been used to simulate a considerable amount of molecules at micro-, and meso- scales. Pristine and defective nanosheet structures considered under the uniaxial tensile loading at various temperatures using open-source LAMMPS codes. The results were visualized with the open-source software of OVITO and VMD. Quantum based first principle calculations have been conducting at electronic scales and known as the most accurate Ab initio methods. However, they are computationally expensive to apply for large systems. We used density functional theory (DFT) to estimate the mechanical and electrochemical response of the 2D materials. Many-body Schrödinger's equation describes the motion and interactions of the solid-state particles. Solid describes as a system of positive nuclei and negative electrons, all electromagnetically interacting with each other, where the wave function theory describes the quantum state of the set of particles. However, dealing with the 3N coordinates of the electrons, nuclei, and N coordinates of the electrons spin components makes the governing equation unsolvable for just a few interacted atoms. Some assumptions and theories like Born Oppenheimer and Hartree-Fock mean-field and Hohenberg-Kohn theories are needed to treat with this equation. First, Born Oppenheimer approximation reduces it to the only electronic coordinates. Then Kohn and Sham, based on Hartree-Fock and Hohenberg-Kohn theories, assumed an equivalent fictitious non-interacting electrons system as an electron density functional such that their ground state energies are equal to a set of interacting electrons. Exchange-correlation energy functionals are responsible for satisfying the equivalency between both systems. The exact form of the exchange-correlation functional is not known. However, there are widely used methods to derive functionals like local density approximation (LDA), Generalized gradient approximation (GGA), and hybrid functionals (e.g., B3LYP). In our study, DFT performed using VASP codes within the GGA/PBE approximation, and visualization/post-processing of the results realized via open-source software of VESTA. The extensive DFT calculations are conducted 2D nanomaterials prospects as anode/cathode electrode materials for batteries. Metal-ion batteries' performance strongly depends on the design of novel electrode material. Two-dimensional (2D) materials have developed a remarkable interest in using as an electrode in battery cells due to their excellent properties. Desirable battery energy storage systems (BESS) must satisfy the high energy density, safe operation, and efficient production costs. Batteries have been using in electronic devices and provide a solution to the environmental issues and store the discontinuous energies generated from renewable wind or solar power plants. Therefore, exploring optimal electrode materials can improve storage capacity and charging/discharging rates, leading to the design of advanced batteries. Our results in multiple scales highlight not only the proposed and employed methods' efficiencies but also promising prospect of recently synthesized nanomaterials and their applications as an anode material. In this way, first, a novel approach developed for the modeling of the 1D nanotube as a continuum piezoelectric beam element. The results converged and matched closely with those from experiments and other more complex models. Then mechanical properties of nanosheets estimated and the failure mechanisms results provide a useful guide for further use in prospect applications. Our results indicated a comprehensive and useful vision concerning the mechanical properties of nanosheets with/without defects. Finally, mechanical and electrochemical properties of the several 2D nanomaterials are explored for the first time—their application performance as an anode material illustrates high potentials in manufacturing super-stretchable and ultrahigh-capacity battery energy storage systems (BESS). Our results exhibited better performance in comparison to the available commercial anode materials. KW - Batterie KW - Modellierung KW - Nanostrukturiertes Material KW - Mechanical properties KW - Multi-scale modeling KW - Energiespeichersystem KW - Elektrodenmaterial KW - Elektrode KW - Mechanische Eigenschaft KW - Elektrochemische Eigenschaft KW - Electrochemical properties KW - Battery development KW - Nanomaterial Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200623-41830 ER - TY - GEN A1 - Nikulla, Susanne T1 - Untersuchung des dynamischen Verhaltens von Eisenbahnbrücken bei wechselnden Umweltbedingungen N2 - Im Zuge des Ausbaus von Eisenbahnstrecken für den Hochgeschwindigkeitsverkehr muss sichergestellt werden, dass keine Resonanz zwischen den periodisch einwirkenden Radlasten und den Brückeneigenfrequenzen entsteht. Bei der Untersuchung einzelner Bauwerke wurden teilweise recht große Schwankungen des dynamischen Verhaltens im Verlauf der Jahreszeiten festgestellt. Um diese Beobachtungen zu präzisieren, wurden an zwei ausgewählten Walzträger-in-Beton-Brücken über den Zeitraum von 15 Monaten Beschleunigungsmessungen durchgeführt. Die gewonnenen Daten wurden mit der Stochastic Subspace Methode, die im ersten Teil der Arbeit näher erläutert wird, ausgewertet. Es konnte für alle Eigenmoden ein Absinken der Eigenfrequenz bei steigender Temperatur beobachtet werden. Um die Ursachen hierfür genauer zu untersuchen, wurde für eine der beiden Brücken ein Finite-Elemente-Modell mit dem Programm SLang erstellt. Mittels einer Sensitivitätsanalyse wurden die für das Schwingverhalten maßgebenden Systemeigenschaften identifiziert. Die anschließend durchgeführte Strukturoptimierung unter Nutzung des genetischen Algorithmus sowie des adaptiven Antwortflächenverfahrens konnte die Temperaturabhängigkeit einzelner Materialparameter aufzeigen, die zumindest eine Ursache für Schwankungen der Eigenfrequenzen darstellen. KW - Dynamik KW - Systemidentifikation KW - Beschleunigungsmessung KW - Strukturoptimierung KW - Modalanalyse KW - Lufttemperatur KW - Zustandsraummodell KW - Stochastic Subspace Identification Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20081020-14324 ER -