TY - THES A1 - Ghasemi, Hamid T1 - Stochastic optimization of fiber reinforced composites considering uncertainties N2 - Briefly, the two basic questions that this research is supposed to answer are: 1. Howmuch fiber is needed and how fibers should be distributed through a fiber reinforced composite (FRC) structure in order to obtain the optimal and reliable structural response? 2. How do uncertainties influence the optimization results and reliability of the structure? Giving answer to the above questions a double stage sequential optimization algorithm for finding the optimal content of short fiber reinforcements and their distribution in the composite structure, considering uncertain design parameters, is presented. In the first stage, the optimal amount of short fibers in a FRC structure with uniformly distributed fibers is conducted in the framework of a Reliability Based Design Optimization (RBDO) problem. Presented model considers material, structural and modeling uncertainties. In the second stage, the fiber distribution optimization (with the aim to further increase in structural reliability) is performed by defining a fiber distribution function through a Non-Uniform Rational BSpline (NURBS) surface. The advantages of using the NURBS surface as a fiber distribution function include: using the same data set for the optimization and analysis; high convergence rate due to the smoothness of the NURBS; mesh independency of the optimal layout; no need for any post processing technique and its non-heuristic nature. The output of stage 1 (the optimal fiber content for homogeneously distributed fibers) is considered as the input of stage 2. The output of stage 2 is the Reliability Index (b ) of the structure with the optimal fiber content and distribution. First order reliability method (in order to approximate the limit state function) as well as different material models including Rule of Mixtures, Mori-Tanaka, energy-based approach and stochastic multi-scales are implemented in different examples. The proposed combined model is able to capture the role of available uncertainties in FRC structures through a computationally efficient algorithm using all sequential, NURBS and sensitivity based techniques. The methodology is successfully implemented for interfacial shear stress optimization in sandwich beams and also for optimization of the internal cooling channels in a ceramic matrix composite. Finally, after some changes and modifications by combining Isogeometric Analysis, level set and point wise density mapping techniques, the computational framework is extended for topology optimization of piezoelectric / flexoelectric materials. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2016,1 KW - Optimization KW - Fiber Reinforced Composite KW - Finite Element Method KW - Isogeometric Analysis KW - Flexoelectricity KW - Finite-Elemente-Methode KW - Optimierung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20161117-27042 ER - TY - THES A1 - Hartmann, Veronika T1 - Methoden zur Quantifizierung und Optimierung der Robustheit von Bauablaufplänen N2 - Bauablaufplänen kommt bei der Realisierung von Bauprojekten eine zentrale Rolle zu. Sie dienen der Koordination von Schnittstellen und bilden für die am Projekt Beteiligten die Grundlage für ihre individuelle Planung. Eine verlässliche Terminplanung ist daher von großer Bedeutung, tatsächlich sind aber gerade Bauablaufpläne für ihre Unzuverlässigkeit bekannt. Aufgrund der langen Vorlaufzeiten bei der Planung von Bauprojekten sind zum Zeitpunkt der Planung viele Informationen nur als Schätzwerte bekannt. Auf der Grundlage dieser geschätzten und damit mit Unsicherheiten behafteten Daten werden im Bauwesen deterministische Terminpläne erstellt. Kommt es während der Realisierung zu Diskrepanzen zwischen Schätzungen und Realität, erfordert dies die Anpassung der Pläne. Aufgrund zahlreicher Abhängigkeiten zwischen den geplanten Aktivitäten können einzelne Planänderungen vielfältige weitere Änderungen und Anpassungen nach sich ziehen und damit einen reibungslosen Projektablauf gefährden. In dieser Arbeit wird ein Vorgehen entwickelt, welches Bauablaufpläne erzeugt, die im Rahmen der durch das Projekt definierten Abhängigkeiten und Randbedingungen in der Lage sind, Änderungen möglichst gut zu absorbieren. Solche Pläne, die bei auftretenden Änderungen vergleichsweise geringe Anpassungen des Terminplans erfordern, werden hier als robust bezeichnet. Ausgehend von Verfahren der Projektplanung und Methoden zur Berücksichtigung von Unsicherheiten werden deterministische Terminpläne bezüglich ihres Verhaltens bei eintretenden Änderungen betrachtet. Hierfür werden zunächst mögliche Unsicherheiten als Ursachen für Änderungen benannt und mathematisch abgebildet. Damit kann das Verhalten von Abläufen für mögliche Änderungen betrachtet werden, indem die durch Änderungen erzwungenen angepassten Terminpläne simuliert werden. Für diese Monte-Carlo-Simulationen der angepassten Terminpläne wird sichergestellt, dass die angepassten Terminpläne logische Weiterentwicklungen des deterministischen Terminplans darstellen. Auf der Grundlage dieser Untersuchungen wird ein stochastisches Maß zur Quantifizierung der Robustheit erarbeitet, welches die Fähigkeit eines Planes, Änderungen zu absorbieren, beschreibt. Damit ist es möglich, Terminpläne bezüglich ihrer Robustheit zu vergleichen. Das entwickelte Verfahren zur Quantifizierung der Robustheit wird in einem Optimierungsverfahren auf Basis Genetischer Algorithmen angewendet, um gezielt robuste Terminpläne zu erzeugen. An Beispielen werden die Methoden demonstriert und ihre Wirksamkeit nachgewiesen. N2 - Construction schedules are of significant importance in the execution of building projects. As basis for individual project planning of all project stakeholders, construction schedules support the coordination of interfaces. While reliable scheduling is of particular relevance for the entire project, construction schedules are known to be notoriously unreliable. Because of long project preparations in civil engineering, information necessary for scheduling is often estimated at the time of drafting construction plans. Therefore uncertain data form the basis of deterministic schedules prepared to guide building executions. When discrepancies between assumptions and reality occur during building processes, schedules need to be adjusted. Due to many interdependencies between construction processes, certain schedule changes may lead to significant further changes and adjustments and may jeopardise a smooth project execution. This thesis develops a method to generate construction schedules that can absorb project changes while considering the interdependencies and boundary conditions imposed by the project specifics. Schedules that require comparatively small adjustments in case of project changes are referred to as robust. Based on methods for project scheduling and for representing process uncertainties, deterministic schedules are studied with respect to their behaviour under changes. Reasons for uncertainties are discussed and transferred into a mathematical description of process changes. Defining process changes mathematically allows analysing schedule adjustments arising from project changes by generating adjusted schedules in Monte Carlo simulations. In this thesis, efforts are made to ensure that schedules created by simulation are logical advancements of the respective original, deterministic schedules. Interpretations of the results of the stochastic simulations serve as basis for quantifying schedule robustness to describe the ability of a schedule to absorb changes. The definition of a robustness measure allows the comparison of schedules in terms of their robustness. The method developed herin is then employed as part of an optimisation procedure based on genetic algorithms to systematically generate robust schedules. To demonstrate their effectiveness, the methods are validated using practical examples. KW - Bauablaufplanung KW - Bauinformatik KW - Optimierung KW - Robustheit Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220204-45798 ER -