TY - THES A1 - Riechert, Christin T1 - Hydratation und Eigenschaften von Gips-Zement-Puzzolan-Bindemitteln mit alumosilikatischen Puzzolanen N2 - Reine Calciumsulfatbindemittel weisen eine hohe Löslichkeit auf. Feuchteinwirkung führt zudem zu starken Festigkeitsverlusten. Aus diesem Grund werden diese Bindemittel ausschließlich für Baustoffe und -produkte im Innenbereich ohne permanenten Feuchtebeanspruchung eingesetzt. Eine Möglichkeit, die Feuchtebeständigkeit zu erhöhen, ist die Beimischung puzzolanischer und zementärer Komponenten. Diese Mischsysteme werden Gips-Zement-Puzzolan-Bindemittel (kurz: GZPB) genannt. Mischungen aus Calciumsulfaten und Portlandzementen allein sind aufgrund der treibenden Ettringitbildung nicht raumbeständig. Durch die Zugabe von puzzolanischen Stoffen können aber Bedingungen im hydratisierenden System geschaffen werden, welche eine rissfreie Erhärtung ermöglichen. Hierfür ist eine exakte Rezeptierung der GZPB notwendig, um die GZPB-typischen, ettringitbedingten Dehnungen zeitlich zu begrenzen. Insbesondere bei alumosilikatischen Puzzolanen treten während der Hydratation gegenüber rein silikatischen Puzzolanen deutlich höhere Expansionen auf, wodurch die Gefahr einer potenziellen Rissbildung steigt. Für die Erstellung geeigneter GZPB-Zusammensetzungen bedarf es daher einer Methodik, um raumbeständig erhärtende Systeme sicher von destruktiven Mischungen unterscheiden zu können. Sowohl für die Rezeptierung als auch für die Anwendung der GZPB existieren in Deutschland keinerlei Normen. Darüber hinaus sind die Hydratationsvorgänge sowie die entstehenden Produkte nicht konsistent beschrieben. Auch auf die Besonderheiten der GZPB mit alumosilikatischen Puzzolanen wird in der Literatur nur unzureichend eingegangen. Ziel war es daher, ein grundlegendes Verständnis der Hydratation sowie eine sichere Methodik zur Rezeptierung raumbeständig und rissfrei erhärtender GZPB, insbesondere in Hinblick auf die Verwendung alumosilikatischer Puzzolane, zu erarbeiten. Darüber hinaus sollte systematisch der Einfluss der Einzelkomponenten auf Hydratation und Eigenschaften dieser Bindemittelsysteme untersucht werden. Dies soll ermöglichen, die GZPB für ein breites Anwendungsspektrum als Bindemittel zu etablieren, und somit vorteilhafte Eigenschaften der Calciumsulfate (geringe Schwindneigung, geringe CO2-Emission etc.) mit der Leistungs-fähigkeit von Zementen (Wasserbeständigkeit, Festigkeit, Dauerhaftigkeit etc.) zu verbinden. Als Ausgangsstoffe der Untersuchungen zu den GZPB wurden Stuckgips und Alpha-Halbhydrat als Calciumsulfatbindemittel in unterschiedlichen Anteilen im GZPB verwendet. Die Puzzolan-Zement-Verhältnisse wurden ebenfalls variiert. Als Puzzolan kam für den Großteil der Untersuchungen ein alumosilikatisches Metakaolin zum Einsatz. Als kalkspendende Komponente diente ein reiner Portlandzement. Das Untersuchungsprogramm gliederte sich in 4 Teile. Zuerst wurde anhand von CaO- und pH-Wert-Messungen in Suspensionen sowie dem Längenänderungsverhalten von Bindemittelleimen verschiedener Zusammensetzungen eine Vorauswahl geeigneter GZPB-Rezepturen ermittelt. Danach erfolgten, ebenfalls an Bindemittelleimen, Untersuchungen zu den Eigenschaften der als geeignet eingeschätzten GZPB-Mischungen. Hierzu zählten Langzeitbetrachtungen zur rissfreien Erhärtung bei unterschiedlichen Umgebungsbedingungen sowie die Festigkeitsentwicklung im trockenen und feuchten Zustand. Im nächsten Schritt wurde anhand zweier exemplarischer GZPB-Zusammensetzungen (mit silikatischen und alumosilikatischen Puzzolan) die prinzipiell mögliche Phasenzusammensetzung unter Variation des Puzzolan-Zement-Verhältnisses (P/Z-Verhältnis) und des Calciumsulfatanteils im thermodynamischen Gleichgewichtszustand berechnet. Hier wurde im Besonderen auf Unterschiede der silikatischen und alumosilikatischen Puzzolane eingegangen. Im letzten Teil der Untersuchungen wurden die Hydratationskinetik der GZPB sowie die Gefügeentwicklung näher betrachtet. Hierfür wurden die Porenlösungen chemisch analysiert und Sättigungsindizes berechnet, sowie elektronenmikropische, porosimetrische und röntgenografische Untersuchungen durchgeführt. Abschließend wurden die Ergebnisse gesamtheitlich interpretiert, da die Ergebnisse der einzelnen Untersuchungsprogramme miteinander in Wechselwirkung stehen. Als hauptsächliche Hydratationsprodukte wurden Calciumsulfat-Dihydrat, Ettringit und C-(A)-S-H-Phasen ermittelt, deren Anteile im GZPB neben dem Calciumsulfatanteil und dem Puzzolan-Zement-Verhältnis auch deutlich vom Wasserangebot und der Gefügeentwicklung abhängen. Bei Verwendung von alumosilikatischen Puzzolans kommt es wahrscheinlich zur teilweisen Substitution des Siliciums durch Aluminium in den C-S-H-Phasen. Dies erscheint aufgrund des Nachweises der für diese Phasen typischen, folienartigen Morphologie wahrscheinlich. Portlandit wurde in raumbeständigen GZPB-Systemen nur zu sehr frühen Zeitpunkten in geringen Mengen gefunden. In den Untersuchungen konnte ein Teil der in der Literatur beschriebenen, prinzipiellen Hydratationsabläufe bestätigt werden. Bei Verwendung von Halbhydrat als Calciumsulfatkomponente entsteht zuerst Dihydrat und bildet die Primärstruktur der GZPB. In dieses existierende Grundgefüge kristallisieren dann das Ettringit und die C-(A)-S-H-Phasen. In den GZPB sorgen entgegen der Beschreibungen in der Literatur nicht ausschließlich die C-(A)-S-H-Phasen zur Verbesserung der Feuchtebeständigkeit und der Erhöhung des Festigkeitsniveaus, sondern auch das Ettringit. Beide Phasen überwachsen im zeitlichen Verlauf der Hydratation die Dihydratkristalle in der Matrix und hüllen diese – je nach Calciumsulfatanteil im GZPB – teilweise oder vollständig ein. Diese Umhüllung sowie die starke Gefügeverdichtung durch die C-(A)-S-H-Phasen und das Ettringit bedingen, dass ein lösender Angriff durch Wasser erschwert oder gar verhindert wird. Gleichzeitig wird die Gleitfähigkeit an den Kontaktstellen der Dihydratkristalle verringert. Eine rissfreie und raumbeständige Erhärtung ist für die gefahrlose Anwendung eines GZPB-Systems essentiell. Hierfür ist die Kinetik der Ettringitbildung von elementarer Bedeutung. Die gebildete Ettringitmenge spielt nur eine untergeordnete Rolle. Selbst ausgeprägte, ettringitbedingte Dehnungen und hohe sich bildende Mengen führen zu frühen Zeitpunkten, wenn die Dihydratkristalle noch leicht gegeneinander verschiebbar sind, zu keinen Schäden. Bleibt die Übersättigung bezüglich Ettringit und somit auch der Kristallisationsdruck allerdings über einen langen Zeitraum hoch, genügen bereits geringe Ettringitmengen, um das sich stetig verfestigende Gefüge stark zu schädigen. Die für die raumbeständige Erhärtung der GZPB notwendige, schnelle Abnahme der Ettringitübersättigung wird hauptsächlich durch die Reaktivität des Puzzolans beeinflusst. Die puzzolanische Reaktion führt zur Bindung des aus dem Zement stammenden Calciumhydroxid durch die Bildung von C-(A)-S-H-Phasen und Ettringit. Hierdurch sinkt die Calcium- und Hydroxidionenkonzentration in der Porenlösung im Verlauf der Hydratation, wodurch auch die Übersättigung bezüglich Ettringit abnimmt. Je höher die Reaktivität des Puzzolans ist, desto schneller sinkt der Sättigungsindex des Ettringits und somit auch der Kristallisationsdruck. Nach Unterschreiten eines noch näher zu klärendem Grenzwert der Übersättigung stagnieren die Dehnungen. Das Ettringit kristallisiert bzw. wächst nun bevorzugt in den Poren ohne eine weitere, äußere Volumenzunahme zu verursachen. Um eine schadensfreie Erhärtung des GZPB zu gewährleisten, muss gerade in der frühen Phase der Hydratation ein ausreichendes Wasserangebot gewährleistet werden, so dass die Ettringitbildung möglichst vollständig ablaufen kann. Andernfalls kann es bei einer Wiederbefeuchtung zur Reaktivierung der Ettringitbildung kommen, was im eingebauten Zustand Schäden verursachen kann. Die Gewährleistung eines ausreichenden Wasserangebots ist im GZPB-System nicht unproblematisch. In Abhängigkeit der GZPB-Zusammensetzung können sich große Ettringitmengen bilden, die einen sehr hohen Wasserbedarf aufweisen. Deshalb kann es, je nach verwendeten Wasser-Bindemittel-Wert, im Bindemittelleim zu einem Wassermangel kommen, welcher die weitere Hydratation verlangsamt bzw. komplett verhindert. Zudem können GZPB-Systeme teils sehr dichte Gefüge ausbilden, wodurch der Wassertransport zum Reaktionsort des Ettringits zusätzlich behindert wird. Die Konzeption raumbeständiger GZPB-Systeme muss anhand mehrerer aufeinander aufbauender Untersuchungen erfolgen. Zur Vorauswahl geeigneter Puzzolan-Zementverhältnisse eignen sich die Messungen der CaO-Konzentration und des pH-Wertes in Suspensionen. Als alleinige Beurteilungsgrundlage reicht dies allerdings nicht aus. Zusätzlich muss das Längenänderungs-verhalten beurteilt werden. Raumbeständige Mischungen mit alumosilikatischen Puzzolanen zeigen zu frühen Zeitpunkten starke Dehnungen, welche dann abrupt stagnieren. Stetige – auch geringe – Dehnungen weisen auf eine destruktive Zusammensetzung hin. Mit diesem mehrstufigen Vorgehen können raumbeständige, stabile GZPB-Systeme konzipiert werden, so dass die Zielstellung der Arbeit erreicht wurde und ein sicherer praktischer Einsatz dieser Bindemittelart gewährleistet werden kann.   KW - Gips KW - Zement KW - Hydratation KW - Gips-Zement-Puzzolan-Bindemittel KW - Hydratation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220825-47076 SN - 978-3-00-073003-0 ER - TY - THES A1 - Link, Tim T1 - Entwicklung und Untersuchung von alternativen Dicalciumsilicat-Bindern auf der Basis von alpha-C2SH N2 - Um den Klimawandel zu begrenzen, müssen die CO2-Emissionen drastisch gesenkt werden [100]. Bis 2050 soll bei der Herstellung von Zement eine Einsparung um 51–60 % auf 0,425–0,350 tCO2/tZement erfolgen [7]. Um dieses Ziel zu erreichen, sind alternative Bindemittelkonzepte notwendig [70]. Diese Arbeit widmet sich alternativen, hochreaktiven Dicalciumsilicat-Bindemitteln, die durch die thermische Aktivierung von α-Dicalcium-Silicat-Hydrat (α-C2SH) erzeugt werden. Das α-C2SH ist eine kristalline C S H-Phase, die im hydrothermalen Prozess, beispielsweise aus Branntkalk und Quarz, herstellbar ist. Die thermische Aktivierung kann bei sehr niedrigen Temperaturen erfolgen (>420 °C) und führt zu einem Multiphasen-C2S-Binder. Als besonders reaktive Bestandteile können x-C2S und röntgenamorphe Anteile enthalten sein. Weiterhin können β C2S, γ C2S und Dellait (Ca6(SiO4)(Si2O7)(OH)2) entstehen. Im Rahmen der Arbeit wird zunächst der Stand des Wissens zur Polymorphie und Hydratation von C2S zusammengefasst. Es werden bekannte C2S-basierte Bindemittelkonzepte vorgestellt und bewertet. Die Herstellung von C2S-Bindern wird experimentell im Labormaßstab untersucht. Dabei kommen unterschiedliche Autoklaven und ein Muffelofen zum Einsatz. Die Herstellungsparameter werden hinsichtlich Phasenbestand und Reaktivität optimiert. Die Bindemittel werden durch quantitative Röntgen-Phasenanalyse (QXRD), Rasterelektronenmikroskopie (REM), N2-Adsorption (BET-Methode), Heliumpycnometer, Thermoanalyse (TGA/DSC) und 29Si-MAS- sowie 29Si-1H-CP/MAS-NMR-Spektroskopie charakterisiert. Das Hydratationsverhalten der Bindemittel wird vorrangig mithilfe von Wärmeflusskalorimetrie untersucht. Weiterhin werden in situ und ex situ XRD-, TGA/DSC- und REM-Untersuchungen durchgeführt. Anhand von zwei Bindemitteln wird die Fähigkeit zur Erzielung hoher Festigkeiten demonstriert. Abschließend erfolgt eine Abschätzung zu Energiebedarf und CO2-Emissionen für die Herstellung der untersuchten C2S-Binder. Die Ergebnisse zeigen, dass für eine hohe Reaktivität der Binder eine niedrige Brenntemperatur und ein geringer Wasserdampfpartialdruck während der thermischen Aktivierung entscheidend sind. Weiterhin muss das hydrothermal hergestellte α-C2SH eine möglichst hohe spezifische Oberfläche aufweisen. Diese Parameter beeinflussen den Phasenbestand und die phasenspezifische Reaktivität. Brenntemperaturen von ca. 420–500 °C führen zu hochreaktiven Bindern, die im Rahmen dieser Arbeit als Niedertemperatur-C2S-Binder bezeichnet werden. Temperaturen von ca. 600–800 °C führen zu Bindern mit geringerer Reaktivität, die im Rahmen dieser Arbeit als Hochtemperatur-C2S bezeichnet werden. Höhere Brenntemperaturen (1000 °C) führen zu Bindemitteln, die innerhalb der ersten drei Tage keine hydraulische Aktivität zeigen. Die untersuchten Bindemittel können sehr hohe Reaktionsgeschwindigkeiten erreichen. Die Wärmeflusskalorimetrie deutet bei einigen Bindemitteln einen nahezu vollständigen Umsatz innerhalb von drei Tagen an. Durch XRD wurde für einen Binder der vollständige Verbrauch von x-C2S innerhalb von drei Tagen nachgewiesen. Für einen mittels in-situ-XRD und Wärmeflusskalorimetrie untersuchten Binder wurde gezeigt, dass die Phasen vorrangig in der Reihenfolge röntgenamorph > x-C2S > β-C2S > γ-C2S hydratisieren. Hydratationsprodukte sind nadelige C S H-Phasen und Portlandit. Die Herstellung durch thermische Aktivierung von α-C2SH führt zu tafeligen Bindemittelpartikeln, die teilweise Zwickelräume und Poren zwischen den einzelnen Partikeln einschließen. Um eine verarbeitbare Bindemittelpaste zu erzeugen, sind daher sehr hohe Wasser/Bindemittel-Werte (z. B. 1,4) erforderlich. Der Wasseranspruch kann durch Mahlung etwa auf das Niveau von Zement gesenkt werden. Die Druckfestigkeitsentwicklung wurde an zwei Niedertemperatur-C2S-Kompositbindern mit 40 % Kalksteinmehl bzw. 40 % Hüttensand untersucht. Aufgrund von theoretischen Betrachtungen zur Porosität in Abhängigkeit des w/b-Wertes wurde dieser auf 0,3 festgelegt. Durch Zugabe von PCE-Fließmittel wurde ein verarbeitbarer Mörtel erhalten. Die Festigkeitsentwicklung ist sehr schnell. Der Kalksteinmehl-Binder erreichte nach zwei Tagen 46 N/mm². Bis Tag 28 trat keine weitere Festigkeitssteigerung ein. Der Hüttensand-Binder erreichte nach zwei Tagen 62 N/mm². Durch die Hüttensandreaktion stieg die Festigkeit bis auf 85 N/mm² nach 28 Tagen an. Für den Herstellungsprozess von Niedertemperatur-C2S-Binder wurden Energieverbräuche und CO2-Emissionen abgeschätzt. Es deutet sich an, dass, bezogen auf die Bindemittelmenge, keine wesentlichen Einsparungen im Vergleich zur Portlandzementherstellung möglich sind. Für die tatsächlichen Emissionen muss jedoch zusätzlich die Leistungsfähigkeit der Bindemittel berücksichtigt werden. Die Leistungsfähigkeit kann als erforderliche Bindemittelmenge betrachtet werden, die je m³ Beton eingesetzt werden muss, um bestimmte Festigkeits-, Dauerhaftigkeits- und Verarbeitungseigenschaften zu erreichen. Aus verschiedenen Veröffentlichungen [94, 201, 206] wurde die These abgeleitet, dass die Leistungsfähigkeit eines Bindemittels maßgeblich von der C-S-H-Menge bestimmt wird, die während der Hydratation gebildet wird. Daher wird für NT-C2S-Binder eine außergewöhnlich hohe Leistungsfähigkeit erwartet. Auf Basis der Leistungsfähigkeitsthese verringern sich die abgeschätzten CO2-Emissionen von NT-C2S-Bindern, sodass gegenüber Portlandzement ein mögliches Einsparpotenzial von 42 % ermittelt wurde. KW - Belit KW - Zement KW - Hydratation KW - Calcinieren KW - Autoklav KW - alpha-C2SH KW - Hydrothermalsynthese KW - alternative Bindemittel KW - CO2 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20180205-37228 ER -