TY - THES A1 - Keßler, Andrea T1 - Matrix-free voxel-based finite element method for materials with heterogeneous microstructures T1 - Matrixfreie voxelbasierte Finite-Elemente-Methode für Materialien mit komplizierter Mikrostruktur N2 - Modern image detection techniques such as micro computer tomography (μCT), magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) provide us with high resolution images of the microstructure of materials in a non-invasive and convenient way. They form the basis for the geometrical models of high-resolution analysis, so called image-based analysis. However especially in 3D, discretizations of these models reach easily the size of 100 Mill. degrees of freedoms and require extensive hardware resources in terms of main memory and computing power to solve the numerical model. Consequently, the focus of this work is to combine and adapt numerical solution methods to reduce the memory demand first and then the computation time and therewith enable an execution of the image-based analysis on modern computer desktops. Hence, the numerical model is a straightforward grid discretization of the voxel-based (pixels with a third dimension) geometry which omits the boundary detection algorithms and allows reduced storage of the finite element data structure and a matrix-free solution algorithm. This in turn reduce the effort of almost all applied grid-based solution techniques and results in memory efficient and numerically stable algorithms for the microstructural models. Two variants of the matrix-free algorithm are presented. The efficient iterative solution method of conjugate gradients is used with matrix-free applicable preconditioners such as the Jacobi and the especially suited multigrid method. The jagged material boundaries of the voxel-based mesh are smoothed through embedded boundary elements which contain different material information at the integration point and are integrated sub-cell wise though without additional boundary detection. The efficiency of the matrix-free methods can be retained. N2 - Moderne bildgebende Verfahren wie Mikro-Computertomographie (μCT), Magnetresonanztomographie (MRT) und Rasterelektronenmikroskopie (SEM) liefern nicht-invasiv hochauflösende Bilder der Mikrostruktur von Materialien. Sie bilden die Grundlage der geometrischen Modelle der hochauflösenden bildbasierten Analysis. Allerdings erreichen vor allem in 3D die Diskretisierungen dieser Modelle leicht die Größe von 100 Mill. Freiheitsgraden und erfordern umfangreiche Hardware-Ressourcen in Bezug auf Hauptspeicher und Rechenleistung, um das numerische Modell zu lösen. Der Fokus dieser Arbeit liegt daher darin, numerische Lösungsmethoden zu kombinieren und anzupassen, um den Speicherplatzbedarf und die Rechenzeit zu reduzieren und damit eine Ausführung der bildbasierten Analyse auf modernen Computer-Desktops zu ermöglichen. Daher ist als numerisches Modell eine einfache Gitterdiskretisierung der voxelbasierten (Pixel mit der Tiefe als dritten Dimension) Geometrie gewählt, die die Oberflächenerstellung weglässt und eine reduzierte Speicherung der finiten Elementen und einen matrixfreien Lösungsalgorithmus ermöglicht. Dies wiederum verringert den Aufwand von fast allen angewandten gitterbasierten Lösungsverfahren und führt zu Speichereffizienz und numerisch stabilen Algorithmen für die Mikrostrukturmodelle. Es werden zwei Varianten der Anpassung der matrixfreien Lösung präsentiert, die Element-für-Element Methode und eine Knoten-Kanten-Variante. Die Methode der konjugierten Gradienten in Kombination mit dem Mehrgitterverfahren als sehr effizienten Vorkonditionierer wird für den matrixfreien Lösungsalgorithmus adaptiert. Der stufige Verlauf der Materialgrenzen durch die voxelbasierte Diskretisierung wird durch Elemente geglättet, die am Integrationspunkt unterschiedliche Materialinformationen enthalten und über Teilzellen integriert werden (embedded boundary elements). Die Effizienz der matrixfreien Verfahren bleibt erhalten. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2018,7 KW - Dissertation KW - Finite-Elemente-Methode KW - Konjugierte-Gradienten-Methode KW - Mehrgitterverfahren KW - conjugate gradient method KW - multigrid method KW - grid-based KW - finite element method KW - matrix-free Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190116-38448 ER - TY - THES A1 - Al-Yasiri, Zainab Riyadh Shaker T1 - Function Theoretic Methods for the Analytical and Numerical Solution of Some Non-linear Boundary Value Problems with Singularities N2 - The p-Laplace equation is a nonlinear generalization of the well-known Laplace equation. It is often used as a model problem for special types of nonlinearities, and therefore it can be seen as a bridge between very general nonlinear equations and the linear Laplace equation, too. It appears in many problems for instance in the theory of non-Newtonian fluids and fluid dynamics or in rockfill dam problems, as well as in special problems of image restoration and image processing. The aim of this thesis is to solve the p-Laplace equation for 1 < p < 2, as well as for 2 < p < 3 and to find strong solutions in the framework of Clifford analysis. The idea is to apply a hypercomplex integral operator and special function theoretic methods to transform the p-Laplace equation into a p-Dirac equation. We consider boundary value problems for the p-Laplace equation and transfer them to boundary value problems for a p-Dirac equation. These equations will be solved iteratively by applying Banach’s fixed-point principle. Applying operator-theoretical methods for the p-Dirac equation, the existence and uniqueness of solutions in certain Sobolev spaces will be proved. In addition, using a finite difference approach on a uniform lattice in the plane, the fundamental solution of the Cauchy-Riemann operator and its adjoint based on the fundamental solution of the Laplacian will be calculated. Besides, we define gener- alized discrete Teodorescu transform operators, which are right-inverse to the discrete Cauchy-Riemann operator and its adjoint in the plane. Furthermore, a new formula for generalized discrete boundary operators (analogues of the Cauchy integral operator) will be considered. Based on these operators a new version of discrete Borel-Pompeiu formula is formulated and proved. This is the basis for an operator calculus that will be applied to the numerical solution of the p-Dirac equation. Finally, numerical results will be presented showing advantages and problems of this approach. N2 - Die p-Laplace-Gleichung ist eine nichtlineare Verallgemeinerung der wohlbekannten Laplace-Gleichung Die p-Laplace-Gleichung wird häufig als Referenzbeispiel für spezielle Typen von Nichtlinearitäten benutzt und kann daher auch als Brücke zwischen sehr allgemeinen nichtlinearen partiellen Differentialgleichungen und der linearen Laplace-Gleichung gesehen werden. Sie ist darüber hinaus auch das mathematische Modell für eine Reihe praxisrelevanter Probleme, wie z.B. in der Theorie nicht-newtonscher Flüssigkeiten, der Strömungsmechanik, der Durchfeuchtung von Schütt- dämmen und auch ein wichtiges Werkzeug zur Behandlung spezieller Probleme der Bildrekonstruktion und Bildverarbeitung. Das Ziel dieser Arbeit ist es, die p-Laplace-Gleichung sowohl für 1 < p < 2 als auch ür 2 < p < 3 zu lösen. Strenge Lösungen werden unter Benutzung der Clifford- Analysis konstruiert. Die Idee ist dabei, einen hyperkomplexen Integraloperator und funktionentheoretische Methoden auf die p-Laplace-Gleichung anzuwenden und diese Gleichung dadurch in eine p-Dirac-Gleichung zu transformieren, die dann besser gelöst werden kann. Es werden spezielle Randwertprobleme für die p-Laplace-Gleichung in Dirichlet-Probleme für die p-Dirac-Gleichung transformiert und dabei die Ordnung der Differentialgleichung reduziert. Die Randwertprobleme für die p-Dirac-Gleichung werden mit Hilfe des Banachschen Fixpunktprinzips iterativ analytisch gelöst. Durch Anwendung operator-theoretischer Methoden kann die Existenz und Eindeutigkeit der Lösung in bestimmten Sobolev-Räumen nachgewiesen werden. Darüber hinaus wird eine Finite Differenzenmethode auf einem gleichmäßigen Gitter in der Ebene angewandt, um die Fundamentallösung des diskreten Laplace- Operators numerisch zu berechnen. In der Folge werden daraus Fundamentallösungen des diskreten Cauchy-Riemann-Operators und seines adjungierten Operators erzeugt. Auf dieser Grundlage werden über Faltungen mit den Fundamentallösungen diskrete Teodorescu-Operatoren definiert, die rechtsinvers zum diskreten Cauchy-Riemann- Operator bzw. zum adjungierten diskreten Cauchy-Riemann-Operator sind. Weiterhin werden diskrete Randoperatoren, die analog zum Cauchyschen Integraloperator sind, eingeführt. Alle vorgenannten Operatoren werden in einer neuen Version einer diskreten Borel-Pompeiu-Formel zusammengeführt und bilden die Grundlage für eine diskrete Operatorenrechnung. Diese Untersuchungen erweitern bekannte Resultate auf wesentlich größere Funktionenklassen als bisher möglich waren. Die diskrete Opera- torenrechnung wird benutzt, um die diskretisierten Randwertprobleme für die p-Dirac- Gleichung numerisch zu lösen. Numerische Resultate werden vorgestellt und diskutiert. Dabei wird auf Vor- und Nachteile der entwickelten Methode eingegangen. KW - discrete function theory KW - finite difference methods KW - p-Laplace equation KW - Finite-Differenzen-Methode Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190506-38987 ER -