TY - THES A1 - Hommel, Angela T1 - Diskret holomorphe Funktionen und deren Bedeutung bei der Lösung von Differenzengleichungen N2 - Auf der Grundlage diskreter Cauchy-Riemann Operatoren werden diskret holomorphe Funktionen definiert und detailliert studiert. Darauf aufbauend wird die Lösung von Differenzengleichungen mit Hilfe der diskret holomorphen Funktionen beschrieben. KW - Differenzengleichung KW - Holomorphe Funktion Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20180827-37846 ER - TY - THES A1 - Al-Yasiri, Zainab Riyadh Shaker T1 - Function Theoretic Methods for the Analytical and Numerical Solution of Some Non-linear Boundary Value Problems with Singularities N2 - The p-Laplace equation is a nonlinear generalization of the well-known Laplace equation. It is often used as a model problem for special types of nonlinearities, and therefore it can be seen as a bridge between very general nonlinear equations and the linear Laplace equation, too. It appears in many problems for instance in the theory of non-Newtonian fluids and fluid dynamics or in rockfill dam problems, as well as in special problems of image restoration and image processing. The aim of this thesis is to solve the p-Laplace equation for 1 < p < 2, as well as for 2 < p < 3 and to find strong solutions in the framework of Clifford analysis. The idea is to apply a hypercomplex integral operator and special function theoretic methods to transform the p-Laplace equation into a p-Dirac equation. We consider boundary value problems for the p-Laplace equation and transfer them to boundary value problems for a p-Dirac equation. These equations will be solved iteratively by applying Banach’s fixed-point principle. Applying operator-theoretical methods for the p-Dirac equation, the existence and uniqueness of solutions in certain Sobolev spaces will be proved. In addition, using a finite difference approach on a uniform lattice in the plane, the fundamental solution of the Cauchy-Riemann operator and its adjoint based on the fundamental solution of the Laplacian will be calculated. Besides, we define gener- alized discrete Teodorescu transform operators, which are right-inverse to the discrete Cauchy-Riemann operator and its adjoint in the plane. Furthermore, a new formula for generalized discrete boundary operators (analogues of the Cauchy integral operator) will be considered. Based on these operators a new version of discrete Borel-Pompeiu formula is formulated and proved. This is the basis for an operator calculus that will be applied to the numerical solution of the p-Dirac equation. Finally, numerical results will be presented showing advantages and problems of this approach. N2 - Die p-Laplace-Gleichung ist eine nichtlineare Verallgemeinerung der wohlbekannten Laplace-Gleichung Die p-Laplace-Gleichung wird häufig als Referenzbeispiel für spezielle Typen von Nichtlinearitäten benutzt und kann daher auch als Brücke zwischen sehr allgemeinen nichtlinearen partiellen Differentialgleichungen und der linearen Laplace-Gleichung gesehen werden. Sie ist darüber hinaus auch das mathematische Modell für eine Reihe praxisrelevanter Probleme, wie z.B. in der Theorie nicht-newtonscher Flüssigkeiten, der Strömungsmechanik, der Durchfeuchtung von Schütt- dämmen und auch ein wichtiges Werkzeug zur Behandlung spezieller Probleme der Bildrekonstruktion und Bildverarbeitung. Das Ziel dieser Arbeit ist es, die p-Laplace-Gleichung sowohl für 1 < p < 2 als auch ür 2 < p < 3 zu lösen. Strenge Lösungen werden unter Benutzung der Clifford- Analysis konstruiert. Die Idee ist dabei, einen hyperkomplexen Integraloperator und funktionentheoretische Methoden auf die p-Laplace-Gleichung anzuwenden und diese Gleichung dadurch in eine p-Dirac-Gleichung zu transformieren, die dann besser gelöst werden kann. Es werden spezielle Randwertprobleme für die p-Laplace-Gleichung in Dirichlet-Probleme für die p-Dirac-Gleichung transformiert und dabei die Ordnung der Differentialgleichung reduziert. Die Randwertprobleme für die p-Dirac-Gleichung werden mit Hilfe des Banachschen Fixpunktprinzips iterativ analytisch gelöst. Durch Anwendung operator-theoretischer Methoden kann die Existenz und Eindeutigkeit der Lösung in bestimmten Sobolev-Räumen nachgewiesen werden. Darüber hinaus wird eine Finite Differenzenmethode auf einem gleichmäßigen Gitter in der Ebene angewandt, um die Fundamentallösung des diskreten Laplace- Operators numerisch zu berechnen. In der Folge werden daraus Fundamentallösungen des diskreten Cauchy-Riemann-Operators und seines adjungierten Operators erzeugt. Auf dieser Grundlage werden über Faltungen mit den Fundamentallösungen diskrete Teodorescu-Operatoren definiert, die rechtsinvers zum diskreten Cauchy-Riemann- Operator bzw. zum adjungierten diskreten Cauchy-Riemann-Operator sind. Weiterhin werden diskrete Randoperatoren, die analog zum Cauchyschen Integraloperator sind, eingeführt. Alle vorgenannten Operatoren werden in einer neuen Version einer diskreten Borel-Pompeiu-Formel zusammengeführt und bilden die Grundlage für eine diskrete Operatorenrechnung. Diese Untersuchungen erweitern bekannte Resultate auf wesentlich größere Funktionenklassen als bisher möglich waren. Die diskrete Opera- torenrechnung wird benutzt, um die diskretisierten Randwertprobleme für die p-Dirac- Gleichung numerisch zu lösen. Numerische Resultate werden vorgestellt und diskutiert. Dabei wird auf Vor- und Nachteile der entwickelten Methode eingegangen. KW - discrete function theory KW - finite difference methods KW - p-Laplace equation KW - Finite-Differenzen-Methode Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190506-38987 ER - TY - THES A1 - Hamzah, Abdulrazzak T1 - Lösung von Randwertaufgaben der Bruchmechanik mit Hilfe einer approximationsbasierten Kopplung zwischen der Finite-Elemente-Methode und Methoden der komplexen Analysis N2 - Das Hauptziel der vorliegenden Arbeit war es, eine stetige Kopplung zwischen der ananlytischen und numerischen Lösung von Randwertaufgaben mit Singularitäten zu realisieren. Durch die inter-polationsbasierte gekoppelte Methode kann eine globale C0 Stetigkeit erzielt werden. Für diesen Zweck wird ein spezielle finite Element (Kopplungselement) verwendet, das die Stetigkeit der Lösung sowohl mit dem analytischen Element als auch mit den normalen CST Elementen gewährleistet. Die interpolationsbasierte gekoppelte Methode ist zwar für beliebige Knotenanzahl auf dem Interface ΓAD anwendbar, aber es konnte durch die Untersuchung von der Interpolationsmatrix und numerische Simulationen festgestellt werden, dass sie schlecht konditioniert ist. Um das Problem mit den numerischen Instabilitäten zu bewältigen, wurde eine approximationsbasierte Kopplungsmethode entwickelt und untersucht. Die Stabilität dieser Methode wurde anschließend anhand der Untersuchung von der Gramschen Matrix des verwendeten Basissystems auf zwei Intervallen [−π,π] und [−2π,2π] beurteilt. Die Gramsche Matrix auf dem Intervall [−2π,2π] hat einen günstigeren Konditionszahl in der Abhängigkeit von der Anzahl der Kopplungsknoten auf dem Interface aufgewiesen. Um die dazu gehörigen numerischen Instabilitäten ausschließen zu können wird das Basissystem mit Hilfe vom Gram-Schmidtschen Orthogonalisierungsverfahren auf beiden Intervallen orthogonalisiert. Das orthogonale Basissystem lässt sich auf dem Intervall [−2π,2π] mit expliziten Formeln schreiben. Die Methode des konsistentes Sampling, die häufig in der Nachrichtentechnik verwendet wird, wurde zur Realisierung von der approximationsbasierten Kopplung herangezogen. Eine Beschränkung dieser Methode ist es, dass die Anzahl der Sampling-Basisfunktionen muss gleich der Anzahl der Wiederherstellungsbasisfunktionen sein. Das hat dazu geführt, dass das eingeführt Basissys-tem (mit 2 n Basisfunktionen) nur mit n Basisfunktion verwendet werden kann. Zur Lösung diese Problems wurde ein alternatives Basissystems (Variante 2) vorgestellt. Für die Verwendung dieses Basissystems ist aber eine Transformationsmatrix M nötig und bei der Orthogonalisierung des Basissystems auf dem Intervall [−π,π] kann die Herleitung von dieser Matrix kompliziert und aufwendig sein. Die Formfunktionen wurden anschließend für die beiden Varianten hergeleitet und grafisch (für n = 5) dargestellt und wurde gezeigt, dass diese Funktionen die Anforderungen an den Formfunktionen erfüllen und können somit für die FE- Approximation verwendet werden. Anhand numerischer Simulationen, die mit der Variante 1 (mit Orthogonalisierung auf dem Intervall [−2π,2π]) durchgeführt wurden, wurden die grundlegenden Fragen (Beispielsweise: Stetigkeit der Verformungen auf dem Interface ΓAD, Spannungen auf dem analytischen Gebiet) über- prüft. KW - Mathematik KW - Bruchmechanik KW - Näherungsverfahren Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200211-40936 ER -