TY - THES A1 - Göbel, Michael T1 - FASER-KUNSTSTOFF-METALL-GLAS-HYBRIDSYSTEME UND DEREN EINSATZ IN TRAGENDEN KONSTRUKTIONEN N2 - Die Entwicklung von Hybridtechnologien führt zu vielen neuartigen und effizienten Anwen-dungen. Hybridtechnologien kommen immer dann zum Einsatz, wenn die ausschließliche Nutzung einer Technologie oder eines Werkstoffs nicht zum gewünschten Ergebnis führt. Dann kann durch Kombination unterschiedlicher Werkstoffe oder Technologien ein System geschaffen werden, das in seiner Konfiguration ein Optimum an Eigenschaften darstellt. Im Bauwesen geht die Entwicklung schon seit jeher in Richtung von immer schlankeren ar-chitektonisch ansprechenden Konstruktionen. In der gegenwärtigen Entwicklung ermöglichen hochtechnologische Kunststoffe und Faserwerkstoffe, wie z. B. Kohlenstofffasern, sehr schlanke, leichte und dennoch hochtragfähiger Konstruktionen. Der wirtschaftliche Aspekt bei der Entwicklung von Tragsystemen bzw. -strukturen erfordert dabei in fast allen Fällen eine kostengünstig effiziente Ausbildung und die Optimierung von Trageigenschaften und Kostenfaktoren. Daher besteht oft die Anforderung nach einem Verbundsystem, bei dem unterschiedliche Materialien in der Art miteinander kombiniert werden, dass jeder Werkstoff für eine bestimmte Beanspruchung angeordnet wird und sein Tragfähigkeitspotenzial optimal ausschöpft. Im Rahmen dieser Arbeit werden an konkreten Beispielen Möglichkeiten aufge-zeigt, Hochtechnologiewerkstoffe in effizienter Art und Weise zu nutzen. Der Kunststoff-Faser-Verbundwerkstoff stellt eine Möglichkeit dar, den als solches nur für dünnschichtige Klebverbindungen nutzbaren Klebstoff in seinen Anwendungsmöglichkeiten zu erweitern. Die Fasern wirken dabei dem mechanischen Schwachpunkt des Klebstoffs, einer nur geringen Zugfestigkeit, effektiv entgegen. Mit faserverstärkten Klebstoff können Anwendungen realisiert werden, bei denen der Klebstoff auch zur Zugkraftübertragung ge-nutzt wird. Zusätzlich bieten Füllstoffe eine Möglichkeit, die Steifigkeit des Klebstoffs zu stei-gern, was für viele mechanischen Beanspruchungen Vorteile mit sich bringt. Die Kombination aus einem partikelgefüllten und zusätzlich faserverstärkten Klebstoff führt zu einem Ver-bundwerkstoff, der für viele unterschiedliche Anwendungen geeignet ist. Praktische Anwen-dungsmöglichkeiten finden sich in der Herstellung von Fassadenelementen, wo der faserver-stärkte Klebstoff zur Verbindung von Aluminiumhohlprofilen verwendet wird. Weitere Anwen-dungsgebiete erstrecken sich auf die Zugkraftbewehrung von Betontragelementen, bei denen der faserverstärkte Klebstoff die Rolle einer Zugbewehrung an der Betonoberfläche übernimmt. Alu-CFK-Hybridelemente ermöglichen die Herstellung sehr effizienter Tragsysteme, bei de-nen Gewichtsreduzierung der Tragstruktur und Kosteneinsparungen im Betrieb des Bauwerks gleichermaßen ermöglicht werden. Die CFK-Lamellen werden dabei in den am stärksten längskraftbeanspruchten Bereichen eines Aluminiumtragelementes angeordnet, wodurch sich die Biegetragfähigkeit des dann hybriden Tragelements signifikant erhöht. In der Folge können Gewichtsreduzierungen, verglichen mit herkömmlichen Aluminiumtragelementen, erzielt werden. Weiterhin können die Querschnittsaußenmaße bei Alu-CFK-Hybridelementen deutlich reduziert werden. In der Folge vereinfachen sich der Transport und die Montage dieser Art Tragwerke, was besonders bei fliegenden Bauten einen wesentlichen Vorteil dar-stellt. Der Einsatz von Glas-Kunststoff-Hybridelementen ermöglicht die Konstruktion transparenter Tragstrukturen in einer optisch einzigartigen Qualität. Die Konstruktion eines Glas-Kunststoff-Hybridelementes ermöglicht ein redundant wirkendes Tragverhalten, bei dem die Steifigkeit und optische Qualität des Glases optimal im Tragsystem genutzt werden können. Der Kunst-stoff stellt eine Art Sicherheitselement dar und übernimmt im Falle eines Glasbruchs die Tragwirkung des Glases. Die Eigenschaft der Vorankündigung eines Systemversagens stellt die Grundlage für eine baupraktische Anwendung des Glas-Kunststoff-Hybridelementes als statisches Tragsystem dar. Durch die Redundanz des Tragverhaltens von Glas-Kunststoff-Hybridelementen ist das Versagen dieser Tragstruktur durch optische oder strukturelle An-zeichen erkennbar und eine Bemessung somit möglich. Für die mechanische Analyse grundlegender Zusammenhänge in Hybridsystemen können ingenieurmäßige, analytische und numerische Betrachtungen durchgeführt werden. Die in-genieurmäßigen Betrachtungen sind sehr gut geeignet, um Abschätzungen zu treffen, die in später durchgeführten experimentellen Bauteiluntersuchungen oft auch ihre Bestätigung fan-den. Bei Detailbetrachtungen, wie z. B. der Analyse eines nichtlinearen Spannungsverlaufes in mechanisch beanspruchten Klebfugen, bietet eine numerische Betrachtung mittels FEM Vorteile, da sie eine sehr detaillierte Auswertung in Bereichen mit hohen Spannungsgradien-ten ermöglicht. Durch die Anwendung der FEM ist es möglich, Strukturen in unterschiedlichen Skalierungsbereichen zu analysieren und dabei auch Bereiche einzubeziehen, die für experimentelle Untersuchungen nur sehr schwer zugänglich sind. Genaue Kenntnisse über das Materialverhalten der zu analysierenden Stoffe stellen dabei eine wesentliche Grundlage für die Erstellung qualitativ hochwertiger Rechenmodelle dar. KW - Klebstoff-Faser-Verbundwerkstoff; Alu-Carbon-Hybridelement; Glas-Kunststoff-Hybridelement; ANSYS; CFK; Klebverbindungen Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20131217-19909 ER - TY - THES A1 - Janke, Lars T1 - Tragverhalten von Betondruckgliedern mit vorgespannter Umschnürung aus Formgedächtnislegierungen, Stahl oder faserverstärkten Kunststoffen N2 - Druckbeanspruchte Bauteile aus Beton können mit zugfesten Umschnürungen von außen verstärkt werden. Mit dieser etablierten Methode konnten axiale Traglast und Duktilität von unzureichend bewehrten Stützen bereits verbessert werden. Es wurde jedoch festgestellt, dass der umschnürte Betonkern dennoch an Festigkeit verliert. Um die Wirksamkeit der Umschnürung zu erhöhen, wird deshalb vorgeschlagen, das umschnürende Material vorzuspannen. Dieser Vorschlag wird insbesondere von der neuen Materialgruppe der Formgedächtnislegierungen inspiriert, die thermisch vorspannbar sind. Bisher sind die Auswirkungen der Vorspannung einer Umschnürung auf das Tragverhalten von Betondruckgliedern kaum untersucht worden. Diese Lücke wird durch systematische Versuche an Betonzylindern mit vorgespannter Umschnürung aus Stahl und kohlenstofffaserverstärktem Kunststoff geschlossen. Die Abbildung der Versuchsergebnisse durch geeignete Modelle ermöglicht auch Aussagen zum Verhalten von Betondruckgliedern mit Umschnürungen aus anderen Materialien, beispielsweise Formgedächtnislegierungen. Um diese in den Berechnungen zu simulieren, wird eine für das Bauwesen infrage kommende eisenbasierte Legierung in separaten axialen Versuchen charakterisiert und thermisch vorgespannt. Die in der vorliegenden Arbeit entwickelten neuen Modelle orientieren sich im Wesentlichen an zwei Zielen: dem Abbilden des mehraxialen Spannungs-Dehnungs-Verhaltens des vorgespannt umschnürten Betons und dem Berechnen der Restfestigkeit des Betons. Die durchgeführten Versuche und Parameterstudien auf Basis der Modelle zeigen: Die Vorspannung der Umschnürung beeinflusst vor allem die Restfestigkeit des Betons wesentlich. Die gewonnenen Erkenntnisse und neuen Methoden können eingesetzt werden, um das Tragverhalten von Betondruckgliedern mit Umschnürungen aus Stahl, faserverstärktem Kunststoff oder Formgedächtnislegierungen zu bewerten. KW - Beton KW - Vorspannung KW - Formgedächtnis KW - Restfestigkeit KW - Stütze KW - Formänderungsenergie KW - Umschnürung KW - Modellierung KW - Verstärkung KW - faserverstärkt Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20141023-23262 ER - TY - THES A1 - Wellnitz, Felix T1 - BAUKLIMATISCHE ERTÜCHTIGUNG UND NACHHALTIGE INSTANDSETZUNG DENKMALGESCHÜTZTER VERWALTUNGSBAUTEN DER 1950er JAHRE AM BEISPIEL DER EHEMALIGEN BAYERISCHEN LANDESVERTRETUNG VON SEP RUF IN BONN N2 - Viele Baudenkmale sind dem Konflikt aus baulichem Instandsetzungsbedarf für eine zeitgemäße Nutzung und einer sich möglicherweise daraus ergebenden Gefährdung der Denkmalsubstanz ausgesetzt. Gründe sind steigende Energiekosten für den Gebäudebetrieb, zeitgemäße Anforderungen an Behaglichkeit und Arbeitsschutz, sowie die Vermeidung von Schäden an der Substanz aufgrund baulicher Mängel des konstruktiven Wärme- und Feuchteschutzes. Gleichzeitig gilt für viele Bauten aber auch die Notwendigkeit regelmäßiger Nutzung und Bewirtschaftung, um den Erhalt überhaupt zu sichern. Die energetische Ertüchtigung von Baudenkmalen scheitert in diesem Spannungsfeld oft am unlösbaren Konflikt zwischen dem Erhalt der bauzeitlichen Substanz auf der einen und der notwendigen energetischen Optimierung der Gebäudehülle auf der anderen Seite. Zielsetzung dieser Fallstudie ist die beispielhafte Entwicklung einer bauklimatischen und denkmalgerechten Ertüchtigungsstrategie am Beispiel eines Verwaltungsgebäudes der Nachkriegsmoderne als Beitrag zur Lösung dieses Konfliktes. KW - Denkmalpflege KW - Bauklimatik KW - Bauphysik KW - Sanierung KW - Nachkriegsmoderne KW - Ertüchtigung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20140919-23031 ER -