TY - THES A1 - Splittgerber, Frank T1 - Identifizierung der Zementart in Zementsteinen und die Übertragbarkeit auf Mörtel und Betone N2 - Der Einsatz ungeeigneter Materialien ist eine der häufigsten Ursachen für Bauwerksschäden. Da die Beseitigung dieser Schäden oft mit hohen Kosten verbunden ist, besteht in der Baupraxis der Bedarf an einer Identifizierungsmethode für eingesetzte Baustoffe. Daneben wäre eine Kenntnis der in einem Bauwerk vorliegenden Materialien auch für Instandhaltungsarbeiten hilfreich. Die Identifizierung der in einem Festbeton oder Festmörtel vorliegenden Zementart gilt auch gegenwärtig noch als schwierig oder sogar unmöglich. Die Schwierigkeiten ergeben sich in erste Linie daraus, dass die Hydratationsprodukte verschiedener Zementarten oft nur geringe Unterschiede in ihrer chemischen und mineralogischen Zusammensetzung aufweisen und die Hydratationsmechanismen bei einigen Zementarten noch nicht vollständig erforscht sind. Primäres Ziel der vorliegenden Arbeit war es zu untersuchen, ob anhand des Mineralphasenbestandes, der sich während einer thermischen Behandlung von Zementsteinen einstellt, eine Identifizierung der vorliegenden Zementart möglich ist. Weiterhin sollte die Übertragbarkeit dieser Ergebnisse auf Betone und Mörtel eingeschätzt werden. Zur Schaffung von Identifizierungsmerkmalen wurden die (angereicherten) Zementsteine bei Temperaturen im Bereich zwischen 600 °C und 1400 °C thermisch behandelt. An den getemperten Proben wurde der Mineralphasenbestand mittels Röntgendiffraktometrie bestimmt. Mit der gleichen Methode wurden die Ausgangszemente und die (angereicherten) Zementsteine untersucht. Aus der Gegenüberstellung der nachgewiesenen Mineralphasen konnten die gesuchten Identifizierungsmerkmale abgeleitet werden. Um den Einfluss der Gesteinskörnungen auf die Identifizierungsmöglichkeiten gesondert zu erfassen, wurde das Versuchsprogramm auf 3 Abstraktionsebenen angelegt. Für die Auswertung der Ergebnisse wurden die Proben zu Klassen zusammengefasst, welche jeweils charakteristische Zusammensetzungen der Ausgangszemente repräsentieren. Für die Analyseergebnisse wurden die klassenspezifischen die Mittel- und Grenzwerte bestimmt. Als die effektivste Methode zur Anreicherung der Zementsteinmatrix aus Mörtel- und Betonproben erwies sich die Kombination aus einer Zerkleinerung in einem Laborbackenbrecher. Die fein partikulären Fraktionen, welche Zementsteingehalte von 70-80 Ma.-% aufwiesen, wurden als Analyseproben verwendet. Es zeigte sich aber auch, dass das Anreicherungsergebnis von der Gesteinskörnungsart abhängt. Bei Laborbetonen mit einer Kalkstein-Gesteinskörnung wurde mit der gleichen Methode lediglich eine Anreicherung des Zementsteins auf etwa 50 Ma.-% erreicht. Die Untersuchungen auf Abstraktionsebene 1 lieferten die Erkenntnis, dass der Hydratationsprozess der Klinkerphasen, der Klinkerphasengemische sowie des Hüttensandes, auch in Gegenwart des Sulfatträgers für Behandlungstemperaturen im Bereich des Klinkerbrandes vollständig reversibel ist. Im Hinblick auf die Identifizierungsmöglichkeiten wurde 1100 °C als optimale Behandlungstemperatur ermittelt, da hier eine Schmelzphasenbildung ausgeschlossen werden kann. Durch eine Gegenüberstellung der chemischen Zusammensetzung der Ausgangszemente und des Phasenbestandes nach der Temperung konnte nachgewiesen werden, dass bei reinen Zementsteinen grundsätzlich alle Bestandteile an der Reaktion, die während der thermischen Behandlung bei 1100 °C stattfindet, beteiligt sind. Der sich einstellende Phasen bestand ist nur von der chemischen Zusammensetzung der Probe und dabei besonders von derem CaO-Gehalt abhängig. Empirisch wurde eine Prioritätenfolge für die Phasenbildung ermittelt. Daraus geht hervor, dass bevorzugt CaO-reiche Phasen, wie Aluminatferritphase, Belit und Ye‘elimit entstehen und dass überschüssiger Kalk als freies CaO vorliegt. Nur wenn der CaO-Gehalt der Probe nicht für die vollständige Bildung der – in der Summe – kalkreichsten Phasen ausreicht, entstehen partiell oder vollständig kalkärmere Phasen, wie Merwinit und Melilith. Basierend auf den Prioritäten zur Phasenbildung wurde ein Satz von Berechnungsgleichungen aufgestellt, mit denen der CaO-Typ aus der Phasenzusammensetzung der bei 1100 °C getemperten Probe bestimmt werden kann. CaO-Typen repräsentieren Bereiche für die chemische Zusammensetzung der Ausgangsprobe, welche bei der Temperaturbehandlung zu einer charakteristischen qualitativen Phasenzusammensetzung führen. Die CaO-Typen der marktüblichen Zementarten wurden anhand der in der Norm EN 197 festgelegten Bereiche für die Zusammensetzung der Zemente aus ihren Hauptbestandteilen sowie der aus der Fachliteratur ermittelten Bereiche für die chemische Zusammensetzung dieser Hauptbestandteile ermittelt. Damit kann für die Zementarten der Phasenbestand vorhergesagt werden, welcher sich während der Temperaturbehandlung des entsprechenden Zementsteins einstellt. Ein Vergleich mit dem gemessenen Phasenbestand erlaubt so die Identifizierung der Zementart. Die Übertragbarkeit der durch die Untersuchungen an den Zementsteinen gewonnenen Erkenntnisse und die daraus abgeleiteten Identifizierungsmöglichkeiten auf Zementsteine, welche aus quarzsandhaltigen Normmörteln angereichert wurden, konnte nachgewiesen werden. Dabei wurde eine leichte Verschiebung des Phasenbestandes hin zu kalkärmeren Phasen beobachtet, welche auf die Reaktionsbeteiligung eines Teils der in den Proben enthaltenen Restgesteinskörnung zurückzuführen ist. Die Unterscheidungsmöglichkeiten zwischen den Zementarten blieben jedoch überwiegend erhalten. Bei Betonen nimmt der Einfluss der Gesteinskörnung auf den Phasenbestand deutlich zu und kann zum Teil nicht mehr vernachlässigt werden. Die Identifizierungsmöglichkeiten müssen deshalb nach der chemischen Zusammensetzung und der Reaktivität der Gesteinskörnung differenziert ermittelt werden. Dazu sind weitere Untersuchungen notwendig. Für Zementsteine, zementsteinreiche Systeme sowie Mörtel und Betone mit wenig reaktiven Gesteinskörnungen kann die Zementart bereits mit der in dieser Arbeit vorgestellten Methode identifiziert werden. In Fällen, für die sich die Bereiche der chemischen Zusammensetzung mehrerer Zementarten überschneiden, kann es dabei notwendig sein, zusätzliche chemische bzw. mineralogische Untersuchungen durchzuführen, z. B. am unbehandelten Zementstein. KW - Baustoff KW - Zement KW - Identifikation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130114-18179 ER - TY - THES A1 - Peters, Simone T1 - The Influence of Power Ultrasound on Setting and Strength Development of Cement Suspensions N2 - Ein aktuelles Thema in der Forschung der Betonindustrie ist die gezielte Steuerung des Erstarrens und der Entwicklung der (Früh)Festigkeit von Betonen und Mörteln. Aus ökonomischer Sicht sind außerdem die Reduktion der CO2-Emission und die Schonung von Ressourcen und Energie wichtige Forschungsschwerpunkte. Eine Möglichkeit zum Erreichen dieser Ziele ist es, die Reaktivität/Hydratation der silikatischen Klinkerphasen gezielt anzuregen. Neben den bereits bekannten Möglichkeiten der Hydratationsbeschleunigung (u.a. Wärmebehandlung, Zugabe von Salzen) bietet die Anwendung von Power-Ultraschall (PUS) eine weitere Alternative zur Beschleunigung der Zementhydratation. Da bis zum jetzigen Zeitpunkt noch keine Erfahrungen zum Einsatz von PUS in der Zementchemie vorliegen, sollen mit der vorliegenden Arbeit grundlegende Kenntnisse zum Einfluss von PUS auf das Fließ- und Erstarrungsverhalten von Zementsuspensionen erarbeitet werden. Dazu wurde die Arbeit in fünf Hauptuntersuchungsabschnitte aufgeteilt. Im ersten Teil wurden optimale PUS-Parameter wie Amplitude und Energieeintrag ermittelt, die eine effiziente Beschleunigung der Portlandzement(CEM I)hydratation bei kurzen Beschallzeiten und begrenzter Zementleimtemperaturerhöhung erlauben. Mit Hilfe unabhängiger Untersuchungsmethoden (Bestimmung des Erstarrungsbeginns, der Festigkeitsentwicklung, zerstörungsfreier Ultraschallprüfung, isothermer Wärmeflusskalorimetrie, hochauflösender Rasterelektronmikroskopie (REM) wurde die Wirkung von PUS auf den Hydratationsverlauf von CEM I-Suspensionen charakterisiert. Die Ergebnisse zeigen, dass die Behandlung von CEM I-Suspensionen mit PUS grundsätzlich ein beschleunigtes Erstarren und eine beschleunigte (Früh)Festigkeitsentwicklung hervorruft. Anhand von REM-Untersuchungen konnte eindeutig nachgewiesen werden, dass die Beschleunigung der CEM I-Hydratation mit einer beschleunigten Hydratation der Hauptklinkerphase Alit korreliert. Auf Grundlage dieser Erkenntnisse wurden die Ursachen der Aktivierung der Alithydratation untersucht. Dazu wurden Untersuchungen an Einzelsystemen des CEM I (silikatische Klinkerphase) durchgeführt. Es ist bekannt, das die Hydratation der Hauptklinkerphase Alit (in der reinen Form Tricalciumsilikat 3CaO*SiO2; C3S) durch Lösungs-/Fällungsreaktionen (Bildung von Calcium-Silikat-Hydrat Phasen, C-S-H Phasen) bestimmt wird. Mit Hilfe von Untersuchungen zur Auflösung (C3S) und Kristallbildung (C-S-H Phasen) in Lösungen und Suspensionen (Aufzeichnung der elektrischen Leitfähigkeit sowie Bestimmung der Ionenkonzentrationen der wässrigen Phase, REM-Charakterisierung der Präzipitate) wurde die Beeinflussung dieser durch eine PUS-Behandlung charakterisiert. Die Ergebnisse zeigen, dass in partikelfreien Lösungen (primäre Keimbildung) eine PUS-Behandlung keinen Einfluss auf die Kinetik der Kristallisation von C-S-H Phasen hervorruft. Das heißt, auch die durch PUS eingetragene Energie reicht offensichtlich nicht aus, um in Abwesenheit von Oberflächen die C-S-H Phasen Bildung zu beschleunigen. Das weist darauf hin, dass die Bildung von C-S-H Phasen nicht durch eine Beschleunigung von Ionen in der Lösung (erhöhte Diffusion durch Anwendung von PUS) hervorgerufen wird. Eine Beschleunigung des Kristallisationsprozesses (Keimbildung und Wachstum von C-S-H Phasen) durch PUS wird nur in Anwesenheit von Partikeln in der Lösung (Suspension) erzielt. Das belegen Ergebnisse, bei denen die Bildung erster C-S-H Phasen bei geringer Übersättigung (heterogene Keimbildung, in Anwesenheit von Oberflächen) erfolgt. Unter diesen Bedingungen konnte gezeigt werden, dass PUS innerhalb der ersten 30 Minuten der Hydratation eine erhöhte Fällung von ersten C-S-H Phasen bewirkt. Diese fungieren dann vermutlich während der Haupthydratation als Keim bzw. geeignete Oberfläche zum beschleunigten Aufwachsen von weiteren C-S-H Phasen. Weiterhin ist vorstellbar, dass (in Analogie zu anderen Bereichen der Sonochemie) PUS durch Kavitation Schockwellen hervorruft, welche Partikel und wässriges Medium beschleunigen und damit erhöhte Partikelbewegungen und -kollisionen induziert. Dies wiederum bewirkt, dass die anfänglich auf der C3S-Oberfläche gebildeten C-S-H Phasen teilweise wieder entfernt werden. Damit ist das Inlösunggehen von Ca- und Si-Ionen aus dem C3S weiterhin möglich. Um den genauen Mechanismus weiter zu charakterisieren sollten mit geeigneten Methoden weitere Untersuchungen durchgeführt werden. Im zweiten Teil der Arbeit wurde der Einfluss von PUS auf das Fließverhalten von CEM I-Suspensionen untersucht. Aus der Anwendung von PUS in anderen technischen Bereichen sind unter anderem Effekte wie das Entlüften, das Homogenisieren und das Dispergieren von Suspensionen und Emulsionen mittels PUS bekannt. Mit Hilfe der Bestimmung des Luftporengehaltes, Sedimentationsversuchen und cryo-SEM Untersuchungen wurde der Einfluss von PUS auf CEM I-Suspensionen charakterisiert. Die Ergebnisse belegen, dass durch PUS eine verbesserte Homogenität und Dispergierung der CEM I-Suspension erzielt wird. Damit wird für CEM I-Suspensionen unterschiedlichster w/z-Werte eine verbesserte Fließfähigkeit festgestellt. Ergebnisse der Bestimmung von Ausbreitmaßen und Trichterauslaufzeiten zeigen, dass PUS einen direkten Einfluss vor allem auf die Viskosität der CEM I-Suspensionen besitzt. Werden Fließmitteln (FM) der CEM I-Suspension zugegeben, wird nicht in jedem Fall eine verbesserte Fließfähigkeit festgestellt. Hier scheint unter bestimmten Voraussetzungen (w/z-Wert, FM-Gehalt, PUS) die Reaktion zwischen Aluminat- und Sulfatphase des Klinkers gestört. Zur eindeutigen Klärung dieses Sachverhaltes bedarf es jedoch weiterer quantitativer Untersuchungen zum Reaktionsumsatz. Im dritten Teil der Arbeit wurden die am CEM I gewonnenen Erkenntnisse zum Einfluss von PUS auf die Hydratation an Portland-Hüttensand(HÜS)-Zement-Systemen verifiziert. Dafür wurden auch in diesem Teil der Arbeit zunächst die optimalen PUS-Parameter festgelegt und der Einfluss auf das Erstarrung- und Erhärtungsverhalten dokumentiert. Untersuchungsmethoden sind unter anderem die Bestimmung des Erstarrungsbeginns und der (Früh)Festigkeitsentwicklung, Temperaturaufzeichnungen und isothermale Wärmeflusskalorimetrie sowie REM. Die Ergebnisse zeigen, dass auch die Reaktion von HÜS-Zementen durch PUS beschleunigt wird. Weiterführende Untersuchungen belegen, dass die erzielte Beschleunigung vorwiegend auf der Beschleunigung der Alitkomponente des CEM I beruht. Im Fokus der Teile vier und fünf dieser Arbeit stand die Anwendbarkeit der PUS-Technik unter praktischen Bedingungen. Zum einen wurde die Anwendbarkeit von PUS in fertig gemischten Mörteln beurteilt. Anhand des Vergleichs wichtiger Frisch- und Festmörteleigenschaften unterschiedlich hergestellter Mörtel (beschallt im Anschluss an konventionelle Mischtechnik, beschallt im Anschluss an Suspensionsmischtechnik mit anschließender Zumischung der Gesteinskörnung und nicht beschallt) wird gezeigt, dass im Fall von Mörteln mit hohem Leimanteil eine durch PUS induzierte beschleunigte Festigkeitsentwicklung auch mit herkömmlichen Mischabläufen (ohne aufwendige Umstellung des Mischprozesses) möglich ist. Abschließend wird untersucht, ob der Herstellungsprozess von Wandbauteilen im Fertigteilwerk durch den Einsatz von PUS optimiert werden kann und ob eine Einbindung der PUS-Technik in den Fertigungsprozess ohne größeren Aufwand möglich ist. Dazu wurden in einem ersten Schritt die Frisch- und Festbetoneigenschaften eines aktuell angewendeten selbstverdichtenden Betons im Labormaßstab (Mörtel) in Abhängigkeit einer PUS-Behandlung dokumentiert und mit der seiner unbeschallten Referenz verglichen. Aufgrund der durch PUS verursachten verbesserten Fließ- und Festigkeitseigenschaften kann die beschallte Mörtelrezeptur hinsichtlich Fließmittelgehalt und Dauer der Wärmebehandlung optimiert werden. Somit werden ca. 30 % der Fließmittelzugabe und 40 % der Dauer der Wärmebehandlung eigespart. Eine Einbindung der PUS-Technik in das betrachtete Fertigteilwerk ist nach Überprüfung der konstruktiven Gegebenheiten der Fertigungsstrukturen ohne größeren Aufwand möglich. KW - Cement KW - Power Ultrasound KW - Acceleration KW - Tricalcium silicate Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170210-27446 SN - ISBN 978-3-00-055602-9 ER - TY - THES A1 - Schöler, Axel T1 - Hydration of multi-component cements containing clinker, slag, type-V fly ash and limestone N2 - Problemstellung und Zielsetzung 1. Die Herstellung von Portlandzementklinker trägt zu etwa 5 bis 8 % zur jährlichen Emissionsmenge an menschlich generiertem CO2 bei. Dies ist begründet in der Verwendung von fossilen Brennstoffen (ca. 40 % des gesamten CO2) und in der Entsäuerung des stark kalksteinhaltigen Rohmehls (ca. 60 % des gesamten CO2). 2. Verschiedene Strategien zur Verringerung des Ausstoßes an CO2 werden angewandt. Dies sind insbesondere die Optimierung der Prozessführung bei der Klinkerherstellung, die Verwendung alternativer Brennstoffe und die teilweise Substitution des Klinkeranteils in Zementen mit mehreren Hauptbestandteilen durch Zementersatzstoffe, sogenannte SCM (supplementary cementitious materials), wobei Hüttensand, Flugasche und Kalksteinmehl die meist verwendeten Materialien darstellen. 3. Durch die Reduktion des Klinkeranteils können quaternäre Systeme nicht nur einen Beitrag zur Reduzierung von CO2-Emissionen leisten. Ebenfalls ist es mit derartigen Systemen möglich Hüttensande und Flugaschen möglichst ökonomisch einzusetzen und gegebenenfalls auf Engpässe bei deren Verfügbarkeit zu reagieren. 4. Hüttensande und Flugaschen zeigen Ähnlichkeiten in ihrer prinzipiellen chemischen Zusammensetzung, so dass ähnliche Hydratphasen während ihrer Reaktion in Anwesenheit von Portlandzement gebildet werden können. Im Vergleich zu ternären Systemen, die neben Kalkstein auch Hüttensand oder Flugasche enthalten, kann bei quaternären Zementen, die neben Kalkstein sowohl Hüttensand als auch Flugasche enthalten, eine ähnliche Phasenentwicklung und damit auch ähnliche Festigkeitsentwicklung erwartet werden. 5. Die Verwendung von SCM als Zementersatzstoff ist durch die im Vergleich zu Portlandzement deutlich langsamere Reaktion und die dadurch bedingte ebenfalls langsamere Festigkeitsentwicklung begrenzt. Dies betrifft insbesondere die Entwicklung innerhalb der ersten 28 Tage. Dementsprechend ist es unerlässlich die Reaktivität von SCM wie Hüttensanden und Flugaschen eingehend zu untersuchen um die Reaktionsfähigkeit- und Geschwindigkeit und somit die Festigkeitsentwicklung zu steigern. 6. Die frühe Reaktion der Hauptklinkerphasen ist weitgehend untersucht und beschrieben, wobei entsprechende Studien meist hochverdünnte Modellsysteme betrachten. Jedoch gibt es kaum Hinweise inwiefern diese Erkenntnisse auf konzentrierte Systeme bei realistischen Wasser-Feststoff Verhältnissen übertragen werden können. Entsprechende Untersuchungen sind nötig um die Wechselwirkungen von Portlandzement und SCM in der Frühphase der Reaktion zu beschreiben. Stand der Wissenschaft 7. In verdünnten Systemen führt steigender Ca-Gehalt zu einer niedrigeren Auflösungsrate von C3S und C2S. 8. Bestimmende Faktoren der Auflösung von C3S sind sowohl die Untersättigung bezüglich C3S als auch die Übersättigung in Bezug auf C-S-H. 9. Erhöhte Al-Konzentrationen führen zur Verzögerung der Hydratation von C3S. Dies kann begründet sein durch die Einbindung von Al in C-S-H und eine dadurch bedingte deutlich langsamere Wachstumsrate von C-(A)-S-H. Ebenfalls scheint ein verzögernder Effekt von Al auf die Auflösung von C3S möglich. 10. Die Oberfläche von Kalkstein bietet besonders gute Bedingungen für die Keimbildung von C-S-H, so dass im Vergleich zu anderen SCM in Anwesenheit von Kalkstein deutlich mehr C-S-H Keime gebildet werden. 11. Die Reaktivität von Hüttensand und Flugasche wird einerseits durch die Korngrösse, andererseits jedoch auch durch die intrinsische Reaktivität des amorphen Anteils selbst bestimmt. 12. In amorphen (Calcium)Aluminosilikaten führt ein steigender Gehalt an Netzwerkmodifizierern, wie z.B. CaO, zu einem stärker depolymerisierten Glasnetzwerk und damit zu steigender Reaktivität. Die Wirkung von amphoteren Oxiden (Al2O3, Fe2O3) die sowohl als Netzwerkmodifizierer als auch als Netzwerkbildner auftreten können ist nicht vollständig geklärt. 13. CO2 haltige Monophasen besitzen im Vergleich zu Monosulfoaluminat eine höhere thermodynamische Stabilität, wodurch Ettringit stabilisiert wird. Durch das hohe spezifische Volumen von Ettringit wird ein Maximum an Raumausfüllung, dadurch eine geringere Porosität und in Folge ein Maximum an Festigkeit erreicht. 14. Kalkstein reagiert nur in geringem Ausmaß entsprechend dem zur Reaktion vorhandenen Al2O3, wobei sich zunächst Hemicarboaluminat, später Monocarboaluminat bildet. Dabei wird Al2O3 nicht nur durch den Portlandzement selbst, sondern auch durch die Auflösung von SCM, insbesondere von Flugasche, zur Verfügung gestellt. Methodik 15. Der Einfluss von SCM auf die frühe Hydratation von Portlandzement in binären (d.h. Hüttensand oder Flugasche oder Quarz) und ternären (d.h. Flugasche und Kalkstein) Systemen wurde mittels isothermer Kalorimetrie und Porenlösungsanalysen untersucht. Über die chemische Zusammensetzung der Porenlösung ermittelte Sättigungsindices und Löslichkeitsprodukte wurden in Bezug zur Wärmeentwicklung gesetzt. Basierend auf den ermittelten Daten wurde evaluiert, inwiefern Mechanismen die die Hydratation von reinen Klinkerphasen in verdünnten Systemen bestimmen ebenfalls in Zementpasten unter realistischen Bedingungen maßgebend sind. 16. Der Einfluss der chemischen Zusammensetzung auf die Reaktivität von Gläsern bei hohem pH (>13) wurde mittels Ionenchromatographie in hoch verdünnten Systemen untersucht. Puzzolanitätstests wurden an vereinfachten Modellsystemen sowie an Portlandzement-Glass-Systemen durchgeführt. Das Reaktionsverhalten der Gläser wurde über isotherme Kalorimetrie und thermogravimetrische Experimente untersucht. Über Massenbilanzkalkulationen kann der Gehalt an gebundenem Wasser in Funktion der Menge an reagiertem Glas berechnet werden. Ein Abgleich mit gebundenem Wasser bestimmt über thermogravimetrische Untersuchungen erlaubt es, den Reaktionsgrad der Gläser abzuschätzen. Zusätzliche Experimente mittels selektiver Lösung wurden zu Vergleichszwecken durchgeführt. 17. Die Reaktionskinetik von quaternären Pasten die sowohl Kalksteinmehl als auch Hüttensand und Flugasche enthalten wurden bis zum Alter von 28 Tagen mittels isothermer Kalorimetrie und Experimenten zum chemischen Schwinden untersucht. Ergänzend wurden Festigkeitsprüfungen an Mörtelprismen durchgeführt. 18. Quaternäre Pasten wurden ebenfalls hinsichtlich der gebildeten Hydratphasen bis zu einem Alter von 182 Tagen untersucht. Hierzu wurden basierend auf thermodynamischen Modellierungen volumetrische Berechnungen zum gesamten Phasenvolumen als Funktion des Kalkstein- und des Flugaschen- bzw. Hüttensandgehalts durchgeführt. Ergänzt durch thermogravimetrische Ermittlung des Gehalts an gebundenem Wasser und Portlandit, sowie mittels qualitativen röntgendiffraktometrischen Untersuchungen wurden die Ergebnisse der thermodynamischen Berechnungen mit der Festigkeitsentwicklung von Mörtelprismen abgeglichen. 19. Porenlösungen von quaternären Systemen wurden bis zu einem Alter von 728 Tagen mittels Ionenchromatographie und pH-Bestimmung analysiert. Über die ermittelten Konzentrationen wurden Sättigungsindices für relevante Phasen ermittelt. Im Hinblick auf den Einfluss des Hüttensandes wurden Porenlösungen für ausgewählte Systeme bei verschiedenen Hüttensandgehalten (20 und 30 M.%) bei 91 Tagen, sowie für die gesamten Matrix bis zu 91 Tagen, auf verschiedene Schwefelspecies untersucht. Im Wesentlichen erzielte Ergebnisse 20. Untersuchungen zur frühen Reaktionskinetik von binären Systemen zeigten einen stärkeren Wärmefluss in Anwesenheit von SCM, bedingt durch erhöhte für die Keimbildung zur Verfügung stehende Oberfläche sowie eine geringere (Über)Sättigung bezüglich C-S-H. Erhöhte Ca-Konzentrationen führten nicht zu langsamerer Auflösung von C3S, wie dies für reine Phasen bei hoher Verdünnung beobachtet wurde. Im Gegensatz zu Untersuchungen in Reinstsystemen führten höhere Ca-Konzentrationen nicht zu geringeren Reaktionsraten von C3S. Die schnellste Reaktion wurde bei Anwesenheit von Kalkstein, d.h. den höchsten Ca-Konzentrationen, beobachtet. Die grundsätzliche Reaktionscharakteristik zeigt einen inversen Bezug zur Untersättigung bezüglich C3S, wobei höhere Untersättigung zu schnellerer Reaktion führt. Wie ebenfalls in Reinstsystemen bei hoher Verdünnung beobachtet, führt die Anwesenheit von Aluminium zur Verzögerung der Reaktion. Höhere SO42–-Konzentrationen wurden in Anwesenheit von Flugasche beobachtet was die Ettringitausfällung verhinderte und zu höheren Al-Konzentrationen führt. Dieser Mechanismus führt zu höheren Al-Konzentrationen in Gegenwart von Quarz, Hüttensand und Kalkstein im Gegensatz zu Anwesenheit von Flugasche. 21. Die frühe Hydratation von quaternären Systemen wird in Anwesenheit von Kalkstein deutlich beschleunigt, während Flugasche zu einer Verzögerung führt. Im Gegensatz zu einem Referenzsystem mit inertem Quarz konnte mittels isothermer Kalorimetrie und chemischem Schwinden eine Reaktionsbeschleunigung in Anwesenheit von Hüttensand nachgewiesen werden. Weitere Zugaben an Flugasche, Kalkstein oder Mischungen von beiden führten zu einer weiteren Beschleunigung, wobei die Unterschiede zwischen diesen Materialien zu gering sind um eine klare Unterscheidung zu ermöglichen. 22. Bei allen zur Glasauflösung- bzw. Reaktivität durchgeführten Experimenten zeigten sich identische Trends, d.h. steigende Reaktivität und Auflösungsgeschwindigkeit mit steigendem Anteil an Netzwerkmodifizierern innerhalb der Glasstruktur. Die Ergebnisse weisen darauf hin, dass Al2O3 in sämtlichen betrachteten Glaszusammensetzungen vorwiegend als Netzwerkmodifizierer vorliegt. Die thermogravimetrische Bestimmung von gebundenem Wasser bei den Modellsystemen und den glashaltigen Zementen kann über Massenbilanzberechnungen als Funktion des Anteils an reagiertem Glas zur Abschätzung des Glasreaktionsgrades verwendet werden. 23. Zu frühen Zeiten von bis zu 7 Tagen hat der Anteil an Hüttensand, Flugasche oder Kalkstein keinen wesentlichen Einfluss auf die Festigkeitsentwicklung. Zu späteren Zeiten wurde über thermodynamische Berechnungen ein Reaktionsgrad des enthaltenen CaCO3 (Calcit) von 2 bis 5 M.% ermittelt. Dies führt zur Bildung von Hemicarboaluminat und Monocarboaluminat wodurch Ettringit indirekt stabilisiert wird. In Folge ergibt sich ein höheres absolutes Volumen der gebildeten Hydratphasen und damit höhere Festigkeiten wie Festigkeitsuntersuchungen an Mörtelprismen zeigen. Dabei hängt der Reaktionsgrad des CaCO3 vom verfügbaren Al2O3 ab, welches neben dem Portlandzement selbst auch durch die Reaktion von Hüttensand, im Besonderen aber durch die Auflösung der Flugasche zur Verfügung steht. 24. Allgemein hat die Anwesenheit von Hüttensand und Flugasche in Gegenwart von Kalkstein wenig Einfluss auf die gebildeten Hydratphasen. Die sukzessive Substitution von Hüttensand durch Flugasche führt zu einer geringen Abnahme von Portlandit und C-S-H und begünstigt die Bildung von mehr Monocarboaluminat und Hemicarboaluminat. Portlandit reagiert puzzolanisch mit der Flugasche wobei sich C-S-H bildet. Dennoch führt die geringe Reaktivität der Flugasche zu geringerem Gehalt an C-S-H was wiederrum sinkendes gesamtes Hydratphasenvolumen und damit niedrigere Festigkeitswerte generiert. Allerdings ist der Einfluss gering und alle untersuchten Systeme erreichen die Festigkeitsklasse 42.5 N entsprechend EN 196-1. 25. Analog zur Hydratphasenbildung zeigten Untersuchungen der Porenlösungschemie von quaternären Systemen durchweg ähnliche Ergebnisse. Entsprechend dem Gehalt an Flugasche sind die stärksten Variationen in den Al-Konzentrationen zu verzeichnen, welche mit steigendem Gehalt an Flugasche und mit fortschreitender Hydratation ansteigen. Weiterhin ist zu späteren Zeiten Portlandit bei hohen Gehalten an Flugasche zusehends untersättigt, während die Untersättigung bezüglich Strätlingit abnimmt, was auf die Auflösung von Portlandit hinweist. 26. Der absolute Gehalt an SO3 in der Porenlösung wird dominiert von Sulfat (SO42–), während die Konzentrationen von Sulfit (SO32–) und Thiosulfat (S2O32–) sehr niedrig waren. Nach 2 Tagen lagen ca. 90 % des gesamten Schwefels in Form von SO42– vor. Nach 91 Tagen waren dies ca. 36 % während ca. 28 % als S2O32– vorlagen. Bei höheren Gehalten an Hüttensand sind dabei nach 7 Tagen höhere Konzentrationen an SO32– und S2O32– feststellbar. N2 - Problem definition and research objectives 1. The production of Portland cement clinker causes approx. 5% to 8% of the annual man-made CO2 emissions. This is due to the usage of mainly fossil fuel (approx. 40 % of the total CO2) and because of the decarbonation of limestone as a main component of the raw meal (approx. 60 % of the total CO2). 2. Various strategies are applied in order to reduce the green-house gas-emissions, such as optimizing the process of clinker production, the use of alternative fuel and the partial substitution of the clinker in blended cement by so-called SCM (supplementary cementitious materials). Hereby blast-furnace slag, fly ash and limestone are the most used materials. 3. Quaternary systems containing three SCM simultaneously besides Portland cement contribute to the reduction of CO2 emissions due to the decrease of the clinker content. In addition, such systems allow to use blast-furnace slag and fly ash in the most economical way and provide the possibility to account for shortages of SCM on the market. 4. Blast-furnace slag and fly ash show similarities in their principal chemical compositions such that similar hydrates are formed during their reaction in presence of Portland cement. Compared to ternary systems based on blast-furnace slag or fly ash besides limestone, quaternary systems that contain both, blast-furnace slag and fly ash, simultaneously besides limestone, are expected to perform similar in terms of phase assemblage and strength development. 5. The use of SCM as cement replacing materials is limited due to their generally slower reaction compared to neat cement which also leads to lower strength development, especially in the early stage of the hydration up to 28 d. To account for this it is necessary to study the reactivity of SCM such as blast-furnace slag and fly ash in detail in order to develop strategies to enhance the reactivity and thereby the strength development of SCM-containing systems. 6. The early hydration of clinker phases is studied in detail, mainly in diluted systems. It is unclear if processes that were found to control the reaction of such model systems are also prevailing in concentrated cement pastes under realistic water-to-solid ratios. Deeper insight to this aspect is needed to better understand interactions of neat Portland cement and SCM in the first hours of hydration. State-of-the-art 7. Increasing Ca-concentrations lead to decreasing dissolution rates of C3S and C2S in diluted systems. 8. The hydration kinetics of C3S is controlled by the interplay of undersaturation with respect to C3S and oversaturation with respect to C-S-H. 9. Increasing Al-concentrations lead to a retardation of the hydration of C3S. It is unclear if the uptake of aluminum in C-S-H to form C-(A)-S-H which has a significantly lower growth rate than pure C-S-H or a retarding effect of Al on the dissolution of C3S causes this phenomenon. 10. The surface of limestone provides excellent conditions for the nucleation and growth of C-S-H such that significantly more C-S-H nuclei are formed in presence of limestone compared to other SCM. 11. The reactivity of blast-furnace slag and fly ash depends on the particle size as well as on the intrinsic reactivity of especially the amorphous phases. 12. An increase in network modifying oxides (e.g. CaO) in the chemical composition of amorphous (calcium)aluminosilicates leads to an increasingly depolymerized network which in turn causes increasing reactivity. The role of amphoteric oxides (Al2O3, Fe2O3) that can be present as network modifying oxides as well as network forming oxides is not completely solved. 13. CO2-containing AFm-phases are thermodynamically more stable than monosulfoaluminate. This indirectly stabilizes the voluminous ettringite which causes a higher total volume of hydrates and lower porosity whereby higher compressive strength is reached. 14. Only a few percent of limestone in blended cement reacts chemically dependent on the Al2O3 available for reaction. Al2O3 that is provided by the reaction of Portland cement but also by the dissolution of SCM, especially by fly ash, reacts to form hemicarboaluminate which is transformed to monocarboaluminate as the hydration proceeds. Methodology 15. The influence of SCM on the early hydration of Portland cement in binary (including blast-furnace slag or fly ash or limestone or quartz) and ternary (including fly ash and limestone) systems was investigated applying isothermal calorimetry and analysis of the pore solution chemistry. Calculated saturation indices and solubility products of relevant phases were correlated with heat development. Based on the gained data it was reviewed if mechanisms that control the hydration of pure phases in diluted systems are also prevailing in cement pastes under realistic conditions. 16. The influence of the chemical composition of synthetic glasses on their dissolution at high pH was investigated in highly diluted systems using ion chromatography. Pozzolanity tests were conducted on pastes using simplified model systems and glass-blended Portland cements. The process of the glass dissolution was investigated by isothermal calorimetry and by thermogravimetry. Correlation of experimentally determined total bound water with bound water determined by mass balance calculations as a function of amount of glass reacted allowed to estimate the degree of glass reaction in the pastes. Further on selective dissolution experiments were carried out to crosscheck the results of the bound water/mass balance approach. 17. The reaction kinetics of quaternary pastes containing blast-furnace slag and fly ash simultaneously in the presence of limestone were investigated up to 28 d using isothermal calorimetry and chemical shrinkage measurements. In addition strength tests on mortar bars were carried out. 18. Pastes of quaternary blends were also investigated in terms of hydrate assemblage at ages of up to 182 d. Thermodynamic calculations regarding total volume of hydrates as a function of limestone and fly ash/blast-furnace slag content were conducted. The calculations were supported by thermogravimetric determination of bound water and portlandite content as well as qualitative X-ray diffraction. The results were correlated with strength tests on mortar bars. 19. The pore solutions of hydrated quaternary blends were extracted and investigated by means of ion chromatography at ages of up to 728 d. Based on the ion concentrations in the solutions saturation indices were calculated for relevant phases. In order to gain better insight to the blast-furnace slag reaction sulphate speciation was carried out at two blast furnace slag levels (20 and 30 wt.%) for selected samples up to 91 d of hydration and at 91 d for the whole matrix under investigation. Main results 20. Investigations on the early hydration kinetics of binary systems showed a higher heat flow in presence of SCM compared to neat Portland cement. This is caused by the higher surface area that is available for the nucleation of hydrates and by the lower (over)saturation with respect to C-S-H. An increase in the Ca-concentration in the pore solution did not cause lower dissolution rates of C3S as was reported for pure phases in diluted systems. The highest dissolution was observed in the presence of limestone, i.e. at the highest Ca-concentration. The general trend of the reaction rate is inversely related to the degree of undersaturation with respect to C3S. The more undersaturated the faster the observed reaction. The presence of increasing Al-concentrations caused a retardation of the reaction which is in line with investigations on pure phases in diluted systems. Higher sulphate concentrations could be detected for the fly ash containing blend which possibly hindered ettringite precipitation and results in higher Al-concentrations. Correspondingly the low sulphate concentrations lead to lower Al-concentrations in the presence of quartz, blast-furnace slag and limestone compared to fly ash. 21. The early hydration kinetics of quaternary systems is significantly accelerated in the presence of limestone while fly ash leads to retardation. Compared to reference systems containing inert quartz, investigations by means of isothermal calorimetry and chemical shrinkage revealed an acceleration caused by blast-furnace slag. Additions of fly ash, limestone or mixtures thereof introduced another acceleration but differences are too small to be significant and clear distinguishing between the various SCM is not possible. 22. Investigations on the reactivity of synthetic glasses showed that increasing amounts of network modifying oxides caused an increase in reactivity and dissolution rates. The results reveal that Al2O3 acts mainly as network modifying oxide in all investigated glasses. Experimentally determined bound water (thermogravimetric experiments) in model systems and blended cements can be compared with bound water determined by mass balance calculations carried out as a function of the amount of glass reacted. This enables to estimate the degree of glass reaction. 23. The actual content of blast-furnace slag, fly ash or limestone does not exert significant influence on the development of compressive strength up to 7 d. At later ages thermodynamic calculations predict a degree of CaCO3 reaction of 2 to 5 wt.%. This leads to the formation of hemicarbonate and monocarbonate whereby ettringite is indirectly stabilized. As a result the total amount of solids is increased and compressive strength shows a slight maximum. Hereby the degree of CaCO3 reaction depends on the Al2O3 available for reaction which is not only provided by the dissolution of Portland cement but especially by the dissolution of the fly ash. 24. In general the presence of blast-furnace slag and fly ash in the presence of limestone exerts little influence on the hydrate assemblage. The substitution of some of the blast-furnace slag by fly ash leads to a slight decrease of portlandite and C-S-H and gives rise to the formation of more monocarbonate and hemicarbonate. Portlandite is consumed in a pozzolanic reaction with the fly ash whereby C-S-H is formed. However, the low reactivity of the fly ash causes a decrease in the amount of C-S-H formed. Thereby a lower total volume of hydrates is generated which is in line with slightly lower compressive strength in case of increasing fly ash content. The overall influence is small and all systems investigated reach strength class 42.5 N according to EN 196-1. 25. Corresponding to the investigations of the hydrate assemblage the pore solution chemistry of quaternary systems showed only small variations. Depending on the fly ash content the highest variations are observed for aluminium, i.e. increasing fly ash content leads to higher Al-concentrations. Another effect of increasing fly ash contents is an increasing undersaturation with respect to portlandite and a decreasing undersaturation with respect to strätlingite indicating the dissolution of portlandite. 26. The total concentration of sulfur in the pore solution is controlled by sulphate (SO42–) while the concentrations of sulphite (SO32–) and thiosulphate (S2O32–) were very low. Up to 2 d of hydration about 90 % of the total sulphur is present as SO42–. After 91 d this value is reduced to about 36 % while about 28 % are present as S2O32–. In general higher blast-furnace slag content leads to higher concentrations of sulphite and thiosulphate after 7 d. KW - quaternary cement KW - supplementary cementitious materials KW - hydration kinetics KW - Thermodynamic modeling KW - degree of reaction KW - Hydrauliche Bindemittel Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20160705-26221 ER - TY - THES A1 - Link, Tim T1 - Entwicklung und Untersuchung von alternativen Dicalciumsilicat-Bindern auf der Basis von alpha-C2SH N2 - Um den Klimawandel zu begrenzen, müssen die CO2-Emissionen drastisch gesenkt werden [100]. Bis 2050 soll bei der Herstellung von Zement eine Einsparung um 51–60 % auf 0,425–0,350 tCO2/tZement erfolgen [7]. Um dieses Ziel zu erreichen, sind alternative Bindemittelkonzepte notwendig [70]. Diese Arbeit widmet sich alternativen, hochreaktiven Dicalciumsilicat-Bindemitteln, die durch die thermische Aktivierung von α-Dicalcium-Silicat-Hydrat (α-C2SH) erzeugt werden. Das α-C2SH ist eine kristalline C S H-Phase, die im hydrothermalen Prozess, beispielsweise aus Branntkalk und Quarz, herstellbar ist. Die thermische Aktivierung kann bei sehr niedrigen Temperaturen erfolgen (>420 °C) und führt zu einem Multiphasen-C2S-Binder. Als besonders reaktive Bestandteile können x-C2S und röntgenamorphe Anteile enthalten sein. Weiterhin können β C2S, γ C2S und Dellait (Ca6(SiO4)(Si2O7)(OH)2) entstehen. Im Rahmen der Arbeit wird zunächst der Stand des Wissens zur Polymorphie und Hydratation von C2S zusammengefasst. Es werden bekannte C2S-basierte Bindemittelkonzepte vorgestellt und bewertet. Die Herstellung von C2S-Bindern wird experimentell im Labormaßstab untersucht. Dabei kommen unterschiedliche Autoklaven und ein Muffelofen zum Einsatz. Die Herstellungsparameter werden hinsichtlich Phasenbestand und Reaktivität optimiert. Die Bindemittel werden durch quantitative Röntgen-Phasenanalyse (QXRD), Rasterelektronenmikroskopie (REM), N2-Adsorption (BET-Methode), Heliumpycnometer, Thermoanalyse (TGA/DSC) und 29Si-MAS- sowie 29Si-1H-CP/MAS-NMR-Spektroskopie charakterisiert. Das Hydratationsverhalten der Bindemittel wird vorrangig mithilfe von Wärmeflusskalorimetrie untersucht. Weiterhin werden in situ und ex situ XRD-, TGA/DSC- und REM-Untersuchungen durchgeführt. Anhand von zwei Bindemitteln wird die Fähigkeit zur Erzielung hoher Festigkeiten demonstriert. Abschließend erfolgt eine Abschätzung zu Energiebedarf und CO2-Emissionen für die Herstellung der untersuchten C2S-Binder. Die Ergebnisse zeigen, dass für eine hohe Reaktivität der Binder eine niedrige Brenntemperatur und ein geringer Wasserdampfpartialdruck während der thermischen Aktivierung entscheidend sind. Weiterhin muss das hydrothermal hergestellte α-C2SH eine möglichst hohe spezifische Oberfläche aufweisen. Diese Parameter beeinflussen den Phasenbestand und die phasenspezifische Reaktivität. Brenntemperaturen von ca. 420–500 °C führen zu hochreaktiven Bindern, die im Rahmen dieser Arbeit als Niedertemperatur-C2S-Binder bezeichnet werden. Temperaturen von ca. 600–800 °C führen zu Bindern mit geringerer Reaktivität, die im Rahmen dieser Arbeit als Hochtemperatur-C2S bezeichnet werden. Höhere Brenntemperaturen (1000 °C) führen zu Bindemitteln, die innerhalb der ersten drei Tage keine hydraulische Aktivität zeigen. Die untersuchten Bindemittel können sehr hohe Reaktionsgeschwindigkeiten erreichen. Die Wärmeflusskalorimetrie deutet bei einigen Bindemitteln einen nahezu vollständigen Umsatz innerhalb von drei Tagen an. Durch XRD wurde für einen Binder der vollständige Verbrauch von x-C2S innerhalb von drei Tagen nachgewiesen. Für einen mittels in-situ-XRD und Wärmeflusskalorimetrie untersuchten Binder wurde gezeigt, dass die Phasen vorrangig in der Reihenfolge röntgenamorph > x-C2S > β-C2S > γ-C2S hydratisieren. Hydratationsprodukte sind nadelige C S H-Phasen und Portlandit. Die Herstellung durch thermische Aktivierung von α-C2SH führt zu tafeligen Bindemittelpartikeln, die teilweise Zwickelräume und Poren zwischen den einzelnen Partikeln einschließen. Um eine verarbeitbare Bindemittelpaste zu erzeugen, sind daher sehr hohe Wasser/Bindemittel-Werte (z. B. 1,4) erforderlich. Der Wasseranspruch kann durch Mahlung etwa auf das Niveau von Zement gesenkt werden. Die Druckfestigkeitsentwicklung wurde an zwei Niedertemperatur-C2S-Kompositbindern mit 40 % Kalksteinmehl bzw. 40 % Hüttensand untersucht. Aufgrund von theoretischen Betrachtungen zur Porosität in Abhängigkeit des w/b-Wertes wurde dieser auf 0,3 festgelegt. Durch Zugabe von PCE-Fließmittel wurde ein verarbeitbarer Mörtel erhalten. Die Festigkeitsentwicklung ist sehr schnell. Der Kalksteinmehl-Binder erreichte nach zwei Tagen 46 N/mm². Bis Tag 28 trat keine weitere Festigkeitssteigerung ein. Der Hüttensand-Binder erreichte nach zwei Tagen 62 N/mm². Durch die Hüttensandreaktion stieg die Festigkeit bis auf 85 N/mm² nach 28 Tagen an. Für den Herstellungsprozess von Niedertemperatur-C2S-Binder wurden Energieverbräuche und CO2-Emissionen abgeschätzt. Es deutet sich an, dass, bezogen auf die Bindemittelmenge, keine wesentlichen Einsparungen im Vergleich zur Portlandzementherstellung möglich sind. Für die tatsächlichen Emissionen muss jedoch zusätzlich die Leistungsfähigkeit der Bindemittel berücksichtigt werden. Die Leistungsfähigkeit kann als erforderliche Bindemittelmenge betrachtet werden, die je m³ Beton eingesetzt werden muss, um bestimmte Festigkeits-, Dauerhaftigkeits- und Verarbeitungseigenschaften zu erreichen. Aus verschiedenen Veröffentlichungen [94, 201, 206] wurde die These abgeleitet, dass die Leistungsfähigkeit eines Bindemittels maßgeblich von der C-S-H-Menge bestimmt wird, die während der Hydratation gebildet wird. Daher wird für NT-C2S-Binder eine außergewöhnlich hohe Leistungsfähigkeit erwartet. Auf Basis der Leistungsfähigkeitsthese verringern sich die abgeschätzten CO2-Emissionen von NT-C2S-Bindern, sodass gegenüber Portlandzement ein mögliches Einsparpotenzial von 42 % ermittelt wurde. KW - Belit KW - Zement KW - Hydratation KW - Calcinieren KW - Autoklav KW - alpha-C2SH KW - Hydrothermalsynthese KW - alternative Bindemittel KW - CO2 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20180205-37228 ER - TY - THES A1 - Ehrhardt, Dirk T1 - ZUM EINFLUSS DER NACHBEHANDLUNG AUF DIE GEFÜGEAUSBILDUNG UND DEN FROST-TAUMITTELWIDERSTAND DER BETONRANDZONE N2 - Die Festigkeitsentwicklung des Zementbetons basiert auf der chemischen Reaktion des Zementes mit dem Anmachwasser. Durch Nachbehandlungsmaßnahmen muss dafür gesorgt werden, dass dem Zement genügend Wasser für seine Reaktion zur Verfügung steht, da sonst ein Beton mit minderer Qualität entsteht. Die vorliegende Arbeit behandelt die grundsätzlichen Fragen der Betonnachbehandlung bei Anwendung von Straßenbetonen. Im Speziellen wird die Frage des erforderlichen Nachbehandlungsbedarfs von hüttensandhaltigen Kompositzementen betrachtet. Die Wirkung der Nachbehandlung wird anhand des erreichten Frost-Tausalz-Widerstandes und der Gefügeausbildung in der unmittelbaren Betonrandzone bewertet. Der Fokus der Untersuchungen lag auf abgezogenen Betonoberflächen. Es wurde ein Modell zur Austrocknung des jungen Betons erarbeitet. Es konnte gezeigt werden, dass in einer frühen Austrocknung (Kapillarphase) keine kritische Austrocknung der Betonrandzone einsetzt, sondern der Beton annährend gleichmäßig über die Höhe austrocknet. Es wurde ein Nomogramm entwickelt, mit dem die Dauer der Kapillarphase in Abhängigkeit der Witterung für Straßenbetone abgeschätzt werden kann. Eine kritische Austrocknung der wichtigen Randzone setzt nach Ende der Kapillarphase ein. Für Betone unter Verwendung von Zementen mit langsamer Festigkeitsentwicklung ist die Austrocknung der Randzone nach Ende der Kapillarphase besonders ausgeprägt. Im Ergebnis zeigen diese Betone dann einen geringen Frost-Tausalz-Widerstand. Mit Zementen, die eine 2d-Zementdruckfestigkeit ≥ 23,0 N/mm² aufweisen, wurde unabhängig von der Zementart (CEM I oder CEM II/B-S) auch dann ein hoher Frost-Tausalz-Widerstand erreicht, wenn keine oder eine schlechtere Nachbehandlung angewendet wurde. Für die Praxis ergibt sich damit eine einfache Möglichkeit der Vorauswahl von geeigneten Zementen für den Verkehrsflächenbau. Betone, die unter Verwendung von Zementen mit langsamere Festigkeitsentwicklung hergestellt werden, erreichen einen hohen Frost-Tausalz-Widerstand nur mit einer geeigneten Nachbehandlung. Die Anwendung von flüssigen Nachbehandlungsmitteln (NBM gemäß TL NBM-StB) erreicht eine ähnliche Wirksamkeit wie eine 5 tägige Feuchtnachbehandlung. Voraussetzung für die Wirksamkeit der NBM ist, dass sie auf eine Betonoberfläche ohne sichtbaren Feuchtigkeitsfilm (feuchter Glanz) aufgesprüht werden. Besonders wichtig ist die Beachtung des richtigen Auftragszeitpunktes bei kühler Witterung, da hier aufgrund der verlangsamten Zementreaktion der Beton länger Anmachwasser abstößt. Ein zu früher Auftrag des Nachbehandlungsmittels führt zu einer Verschlechterung der Qualität der Betonrandzone. Durch Bereitstellung hydratationsabhängiger Transportkenngrößen (Feuchtetransport im Beton) konnten numerische Berechnungen zum Zusammenspiel zwischen der Austrocknung, der Nachbehandlung und der Gefügeentwicklung durchgeführt werden. Mit dem erstellten Berechnungsmodell wurden Parameterstudien durchgeführt. Die Berechnungen bestätigen die wesentlichen Erkenntnisse der Laboruntersuchungen. Darüber hinaus lässt sich mit dem Berechnungsmodell zeigen, dass gerade bei langsam reagierenden Zementen und kühler Witterung ohne eine Nachbehandlung eine sehr dünne Randzone (ca. 500 µm – 1000 µm) mit stark erhöhter Kapillarporosität entsteht. N2 - The hardening of cement concrete is based on the chemical reaction of cement and water. Therefore, the ensuring of sufficient amount of water in concrete is essential. All these measures are referred as curing of concrete. This dissertation provides a basic consideration of curing of concrete for concrete pavements. In this regard the using of cements with slow strength development, e.g. cements with blast furnace slag is the main topic. The effectiveness of curing was evaluated on the basis of the freeze-thaw de-icing resistance and the microstructure of hardened outer concrete surface. Concrete surfaces with textured mortar are on the focus. The results were used to develope a model of the drying of young concrete. It could be shown, that the outer concrete surface does not dry during the first drying phase (called capillary phase). Instead the concrete is drying evenly over the high of the concrete sample during the capillary drying phase. A fast drying of the outer concrete surface only takes place after the capillary drying phase. Based on all results a nomogram (for road concrete) was created for an estimation of the duration of the capillary drying phase. If there is no curing after the capillary drying phase the concrete with use of slowly reacting cement has a great risk for a harmful drying of outer concrete surface. In this case such a concrete shows a very poor freeze thaw de-icing resistance. By using cements with a 2 day-compressive strength ≥ 23,0 N/mm² a good freeze thaw de-icing resistance could assure, despite no or a poor curing was applied. This criterion can be used to estimate the usability of cements with granulated blast furnace slag when a great freeze thaw de-icing resistance is essential. There could also be used a cement with lower 2 day-compressive strength. In this case a good curing has to be assured. Spraying of liquid curing compounds according to TL NBM-StB is suitable for curing concrete pavements. The curing compound should not be sprayed on a concrete surface with any visible water film. The effectiveness of curing compounds is equal to a five days long wet curing in consideration of applying the curing compound at the right time. Otherwise there is some negative influence when the spraying of curing compounds starts too early. Consideration about the right application time of curing compounds is more important for low temperatures because the concrete bleeds much longer due to the slower cement reaction at low temperatures. It was possible to create a numerical model which accounts the interaction between drying, curing and development of microstructure by providing hydration dependent transport parameters (water transport in concrete). The model was used for a parameter study. It could be shown that the combination of cements with slow strength development and low ambient temperatures leads to a thin surface zone (500 µm – 1000 µm) with very high capillary porosity. KW - Beton KW - Zement KW - Nachbehandlung KW - Modellbildung KW - Nachbehandlungsmittel KW - Straßenbeton KW - Frost-Tausalz-Widerstand KW - curing compounds KW - concrete pavements Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20171120-36889 ER - TY - THES A1 - Van, Viet-Thien-An T1 - Characteristics of Rice Husk Ash and Application in Ultra-High Performance Concrete T1 - Charakterisierung von Reisschalenasche und deren Verwendung im Ultrahochfesten Beton N2 - The present thesis studies the effects of rice husk ash (RHA) as a pozzolanic admixture and the combination of RHA and ground granulated blast-furnace slag (GGBS) on properties of ultra-high performance concrete (UHPC). The ultimate purpose of this study is to replace completely silica fume (SF) and partially Portland cement by RHA and GGBS to achieve sustainable UHPC. To reach this aim, characteristics of RHA in dependence of grinding period, especially its pozzolanic reactivity in saturated Ca(OH)2 solution and in a cementitious system at a very low water binder ration (w/b) were assessed. The influences of RHA on compatibility between superplasticizer and binder, workability, compressive strength, shrinkage, internal relative humidity, microstructure and durability of UHPC were also evaluated. Furthermore, synergic effects of RHA and GGBS on the properties of UHPC were investigated to produce more sustainable UHPC. Finally, various heat treatments were applied to study the properties of UHPC under these conditions. All the characteristics of these UHPCs containing RHA were compared to those of mixtures containing SF. KW - Rice husk ash KW - Werkstoffkunde KW - Silica fume KW - Mesoporous structure KW - Pozzolanic reactivity KW - Ultra-high performance concrete. Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130703-19718 SN - 978-3-00-042717-6 PB - Bauhaus-Universität Weimar, Professur Werkstoffe des Bauens CY - Weimar-Germany ER - TY - THES A1 - Remus, Ricardo T1 - Ultraschallgestützte Betonherstellung. Konzept für eine ressourcenschonende Betonproduktion N2 - Aktuell findet aufgrund gesellschaftspolitischer Forderungen in vielen Industriezweigen ein Umdenken in Richtung Effizienz und Ökologie aber auch Digitalisierung und Industrie 4.0 statt. In dieser Hinsicht steht die Bauindustrie, im Vergleich zu Industrien wie IT, Automobil- oder Maschinenbau, noch am Anfang. Dabei sind die Potentiale zur Einsparung und Optimierung gerade in der Bauindustrie aufgrund der großen Mengen an zu verarbeiteten Materialien besonders hoch. Die internationale Ressourcen- und Klimadebatte führt verstärkt dazu, dass auch in der Zement- und Betonherstellung neue Konzepte erstellt und geprüft werden. Einerseits erfolgt intensive Forschung und Entwicklung im Bereich alternativer, klimafreundlicher Zemente. Andererseits werden auch auf Seiten der Betonherstellung innovative materialsparende Konzepte geprüft, wie die aktuelle Entwicklung von 3D-Druck mit Beton zeigt. Aufgrund der hohen Anforderungen an Konstruktion, Qualität und Langlebigkeit von Bauwerken, besitzen Betonfertigteile oftmals Vorteile gegenüber Ortbeton. Die hohe Oberflächenqualität und Dauerhaftigkeit aber auch die Gleichmäßigkeit und witterungsunabhängige Herstellung sind Merkmale, die im Zusammenhang mit Betonfertigteilen immer wieder erwähnt werden. Dabei ist es essenziell, dass auch der Betonherstellungsprozess im Fertigteilwerk kritisch hinterfragt wird, damit eine effizientere und nachhaltigere Produktion von Betonfertigteilen möglich wird. Bei der Herstellung von Betonteilen im Fertigteilwerk liegt ein besonderer Fokus auf der Optimierung der Frühfestigkeitsentwicklung. Hohe Frühfestigkeiten sind Voraussetzung für einen hochfrequenten Schalungszyklus, was Arbeiten im 2- bzw. 3-Schichtbetrieb ermöglicht. Oft werden zur Sicherstellung hoher Frühfestigkeiten hochreaktive Zemente in Kombination mit hohen Zementgehalten im Beton und/oder einer Wärmebehandlung eingesetzt. Unter dieser Prämisse ist eine ökologisch nachhaltige Betonproduktion mit verminderter CO2 Bilanz nicht möglich. In der vorliegenden Arbeit wird ein neues Verfahren zur Beschleunigung von Beton eingeführt. Hierbei werden die Bestandteile Zement und Wasser (Zementsuspension) mit Ultraschall vorbehandelt. Ausgangspunkt der Arbeit sind vorangegangene Untersuchungen zum Einfluss von Ultraschall auf die Hydration von Zement bzw. dessen Hauptbestandteil Tricalciumsilikat (C3S), die im Rahmen dieser Arbeit weiter vertieft werden. Darüber hinaus wird die Produktion von Beton mit Ultraschall im Technikumsmaßstab betrachtet. Die so erlangten Erfahrungen dienten dazu, das Ultraschall-Betonmischsystem weiterzuentwickeln und erstmalig zur industriellen Betonproduktion zu nutzen. In der vorliegenden Arbeit werden die Auswirkungen von Ultraschall auf die Hydratation von C3S zunächst weitergehend und grundlegend untersucht. Dies erfolgte mittels Messung der elektrischen Leitfähigkeit, Analyse der Ionenkonzentration (ICP-OES), Thermoanalyse, Messung der BET-Oberfläche sowie einer optischen Auswertung mittels Rasterelektronenmikroskopie (REM). Der Fokus liegt auf den ersten Stunden der Hydratation, also der Zeit, die durch die Ultraschallbehandlung am stärksten beeinflusst wird. In den Untersuchungen zeigt sich, dass die Beschleunigungswirkung von Ultraschall in verdünnten C3S Suspensionen (w/f-Wert = 50) stark von der Portlanditkonzentration der Lösung abhängt. Je niedriger die Portlanditkonzentration, desto größer ist die Beschleunigung. Ergänzende Untersuchungen der Ionenkonzentration der Lösung sowie Untersuchungen am hydratisierten C3S zeigen, dass unmittelbar nach der Beschallung (nach ca. 15 Minuten Hydratation) erste Hydratphasen vorliegen. Die durch Ultraschall initiiere Beschleunigung ist in den ersten 24 Stunden am stärksten und klingt dann sukzessive ab. Die Untersuchungen schließen mit Experimenten an C3S-Pasten (w/f-Wert = 0,50), die die Beobachtungen an den verdünnten Suspensionen bestätigen und infolge der Beschallung ein früheres Auftreten und einen größeren Anteil an C-S-H Phasen zeigen. Es wird gefolgert, dass die unmittelbar infolge von Ultraschall erzeugten C-S-H Phasen als Kristallisationskeim während der folgenden Reaktion dienen und daher Ultraschall als in-situ Keimbildungstechnik angesehen werden kann. Optisch zeigt sich, dass die C-S-H Phasen der beschallten Pasten nicht nur viel früher auftreten, sondern kleiner sind und fein verteilt über die Oberfläche des C3S vorliegen. Auch dieser Effekt wird als vorteilhaft für den sich anschließenden regulären Strukturaufbau angesehen. Im nächsten Schritt wird daher der Untersuchungsfokus vom Modellsystem mit C3S auf Portlandzement erweitert. Hierbei wird der Frage nachgegangen, wie sich eine Änderung der Zusammensetzung der Zementsuspension (w/z-Wert, Fließmittelmenge) beziehungsweise eine Änderung des Ultraschallenergieeintrag auf die Fließeigenschaften und das Erhärtungsverhalten auswirken. Um den Einfluss verschiedener Faktoren gleichzeitig zu betrachten, werden mit Hilfe von statistischen Versuchsplänen Modelle erstellt, die das Verhalten der einzelnen Faktoren beschreiben. Zur Beschreibung der Fließeigenschaften wurde das Setzfließ- und Ausbreitmaß von Zementsuspensionen herangezogen. Die Beschleunigung der Erhärtung wurde mit Hilfe der Ermittlung des Zeitpunkts des normalen Erstarrens der Zementsuspension bestimmt. Die Ergebnisse dieser Untersuchungen zeigen deutlich, dass die Fließeigenschaften und der Erstarrungsbeginn nicht linear mit steigendem Ultraschall-Energieeintrag verändert werden. Es zeigt sich, dass es besonders bei den Verarbeitungseigenschaften der Portlandzementsuspensionen zur Ausbildung eines spezifischen Energieeintrages kommt, bis zu welchem das Setzfließ- und das Ausbreitmaß erhöht werden. Bei Überschreiten dieses Punktes, der als kritischer Energieeintrag definiert wurde, nimmt das Setzfließ- und Ausbreitmaß wieder ab. Das Auftreten dieses Punktes ist im besonderen Maße abhängig vom w/z-Wert. Mit sinkendem w/z-Wert wird der Energieeintrag, der eine Verbesserung der Fließeigenschaften hervorruft, reduziert. Bei sehr niedrigen w/z-Werten (< 0,35), kann keine Verbesserung mehr beobachtet werden. Wird Fließmittel vor der Beschallung zur Zementsuspension zugegeben, können die Eigenschaften der Zementsuspension maßgeblich beeinflusst werden. In beschallten Suspensionen mit Fließmittel, konnte in Abhängigkeit des Energieeintrages die fließmittelbedingte Verzögerung des Erstarrungsbeginns deutlich reduziert werden. Weiterhin zeigt sich, dass der Energieeintrag, der notwendig ist um den Erstarrungsbeginn um einen festen Betrag zu reduzieren, bei Suspensionen mit Fließmittel deutlich reduziert ist. Auf Grundlage der Beobachtungen an Zementsuspensionen wird der Einfluss von Ultraschall in einen dispergierenden und einen beschleunigenden Effekt unterteilt. Bei hohen w/z-Werten dominiert der dispergierende Einfluss von Ultraschall und der Erstarrungsbeginn wird moderat verkürzt. Bei niedrigeren w/z-Werten der Zementsuspension, dominiert der beschleunigende Effekt wobei kein oder sogar ein negativer Einfluss auf die Verarbeitungseigenschaften beobachtet werden kann. Im nächsten Schritt werden die Untersuchungen auf den Betonmaßstab mit Hilfe einer Technikumsanlage erweitert und der Einfluss eines zweistufigen Mischens (also dem Herstellen einer Zementsuspension im ersten Schritt und dem darauffolgenden Vermischen mit der Gesteinskörnung im zweiten Schritt) mit Ultraschall auf die Frisch- und Festbetoneigenschaften betrachtet. Durch die Anlagentechnik, die mit der Beschallung größerer Mengen Zementsuspension einhergeht, kommen weitere Einflussfaktoren auf die Zementsuspension hinzu (z. B. Pumpgeschwindigkeit, Temperatur, Druck). Im Rahmen der Untersuchungen wurde eine Betonrezeptur mit und ohne Ultraschall hergestellt und die Frisch- und Festbetoneigenschaften verglichen. Darüber hinaus wurde ein umfangreiches Untersuchungsprogramm zur Ermittlung wesentlicher Dauerhaftigkeitsparameter durchgeführt. Aufbauend auf den Erfahrungen mit der Technikumsanlage wurde das Ultraschall-Vormischsystem in mehreren Stufen weiterentwickelt und abschließend in einem Betonwerk zur Betonproduktion verwendet. Die Untersuchungen am Beton zeigen eine deutliche Steigerung der Frühdruckfestigkeiten des Portlandzementbetons. Hierbei kann die zum Entschalen von Betonbauteilen notwendige Druckfestigkeit von 15 MPa deutlich früher erreicht werden. Das Ausbreitmaß der Betone (w/z-Wert = 0,47) wird infolge der Beschallung leicht reduziert, was sich mit den Ergebnissen aus den Untersuchungen an reinen Zementsuspensionen deckt. Bei Applikation eines Überdruckes in der Beschallkammer oder einer Kühlung der Suspension während der Beschallung, kann das Ausbreitmaß leicht gesteigert werden. Allerdings werden die hohen Frühdruckfestigkeiten der ungekühlten beziehungsweise drucklosen Variante nicht mehr erreicht. In den Untersuchungen kann gezeigt werden, dass das Potential durch die Ultraschall-Beschleunigung genutzt werden kann, um entweder die Festigkeitsklasse des Zementes leitungsneutral zu reduzieren (von CEM I 52,5 R auf CEM I 42,5 R) oder eine 4-stündige Wärmebehandlung vollständig zu substituieren. Die Dauerhaftigkeit der Betone wird dabei nicht negativ beeinflusst. In den Untersuchungen zum Sulfat-, Karbonatisierung-, Chlorideindring- oder Frost/Tauwiderstand kann weder ein positiver noch ein negativer Einfluss durch die Beschallung abgeleitet werden. Ebenso kann in einer Untersuchung zur Alkali-Kieselsäure-Reaktion kein negativer Einfluss durch die Ultraschallbehandlung beobachtet werden. In den darauf aufbauenden Untersuchungen wird die Anlagentechnik weiterentwickelt, um die Ultraschallbehandlung stärker an eine reale Betonproduktion anzupassen. In der ersten Iterationsstufe wird das in den Betonuntersuchungen verwendete Anlagenkonzept 1 modifiziert (von der In-line-Beschallung zur Batch-Beschallung) und als Analgenkonzept 2 für weitere Untersuchungen genutzt. Hierbei wird eine neue Betonrezeptur mit höherem w/z-Wert (0,52) verwendet, wobei die Druckfestigkeiten ebenfalls deutlich gesteigert werden können. Im Gegensatz zum ersten Beton, wird das Ausbreitmaß dieser Betonzusammensetzung gesteigert, was zur Reduktion von Fließmittel genutzt wird. Dies deckt sich ebenfalls mit den Beobachtungen an reinen Portlandzementsuspensionen, wo eine deutliche Verbesserung der Fließfähigkeit bei höheren w/z-Werten beschrieben wird. Für diese Betonrezeptur wird ein Vergleich mit einem kommerziell erhältlichen Erhärtungsbeschleuniger (synthetische C-S-H-Keime) angestellt. Hierbei zeigt sich, dass die Beschleunigungswirkung beider Technologien vergleichbar ist. Eine Kombination beider Technologien führt zu einer weiteren deutlichen Steigerung der Frühfestigkeiten, so dass hier von einem synergistischen Effekt ausgegangen werden kann. In der letzten Iterationsstufe, dem Anlagenkonzept 3, wird beschrieben, wie das Mischsystem im Rahmen einer universitären Ausgründung signifikant weiterentwickelt wird und erstmals in einem Betonwerk zur Betonproduktion verwendet wird. Bei den Überlegungen zur Weiterentwicklung des Ultraschall-Mischsystems wird der Fokus auf die Praktikabilität gelegt und gezeigt, dass das ultraschallgestütze Mischsystem die Druckfestigkeitsentwicklung auch im Werksmaßstab deutlich beschleunigen kann. Damit ist die Voraussetzung für eine ökologisch nachhaltige Optimierung eines Fertigteilbetons unter realen Produktionsbedingungen geschaffen worden. N2 - In the past years efficiency and sustainability as well as digitalization has come into focus for many different industries due to environmental and cultural changes. Compared to industries like IT, automotive or machine manufacturing, the building industry is still at the very beginning. Although, due to the large quantities of materials processed, the potential for savings and optimization is especially high in the construction industry. The international discussion on resources and climate is increasingly leading to new concepts being developed and tested in cement and concrete production. On one hand, intensive research and development is taking place in the area of alternative, climate-friendly cements. On the other hand, innovative concepts, like for example 3D-printing, are being tested in concrete production. Due to the construction, quality and durability requirements of buildings, precast concrete elements often have advantages compared to ready-mixed concrete. The high surface quality, durability, as well as the uniformity and weather-independent production are advantages that are repeatedly mentioned when speaking about precast concrete elements. It is necessary though, to discuss the concrete production process in the precast plant to make an efficient and sustainable production of precast concrete elements possible. Precast concrete producers mainly focus on optimizing early strength development. Fast hardening concrete is required for the demolding cycle, to enable shift work in production. Often, to ensure high early strengths, highly reactive cements are used in combination with high cement contents in the concrete and/or heat treatment. This contradicts a sustainable concrete concept. In this thesis, a new method for mixing concrete is discussed. Here, the reactive components of the concrete, cement and water, are pre-treated with ultrasound. Previous investigations on the influence of ultrasound on C3S and cement are the starting point of this work. These are further investigated in as part of this work. Furthermore, the production of concrete with ultrasound is investigated in a pilot scale. The gained experiences were used to further develop the ultrasonic concrete mixing system. Finally, the application of this technology in industrial concrete production is discussed. In this work, the effects of ultrasound on the hydration of C3S are further investigated. For this purpose, the hydration of sonicated suspensions is monitored by measuring the electrical conductivity, analysing the ion concentration by means of ICP-OES, thermal analysis, measuring the BET surface and an optical evaluation by means of scanning electron microscopy (SEM). The focus is on the first hours of hydration. During this time the hydration is most strongly influenced by the ultrasound treatment. The investigations show that the acceleration effect in diluted suspensions (w/s value = 50) is strongly dependent on the portlandite concentration of the solution. The lower the portlandite concentration, the greater the acceleration. Supplementary investigations of the ion concentration of the solution as well as investigations on hydrated C3S show, that first hydrate phases are observable immediately after sonication. The acceleration induced by ultrasound is strongest within the first 24 hours, gradually decreasing beyond this time. The investigations are concluded with experiments on C3S pastes (w/f value = 0.50), which confirm the observations on the diluted suspensions and show an earlier appearance and a greater number of C-S-H phases as a result of sonication. Visually, the C-S-H phases of the sonicated pastes do not only appear much earlier, they are also smaller and finely distributed over the surface of the C3S. In the next step, the focus of the investigation is extended from the model system with C3S to Portland cement. The question to be discussed is how different compositions of the cement suspension (w/c-ratio, amount of superplasticiser) or a change in the ultrasonic energy input affects the flow properties and the hardening behaviour. To consider the influence of different factors simultaneously, models are developed with design of experiments (DoE), which describes the behavior of the individual factors. To describe the workability, the slump of cement suspensions was determined. The acceleration of setting was measured by determining the time of normal setting of the cement suspension. The results of these investigations clearly show that the flow properties and the set time do not change linearly with increasing energy input. It is shown that there is a threshold of the specific energy input up to which the slump is increased. When this point, which is defined as the critical energy input, is exceeded, the slump decreased. The occurrence of this point is particularly dependent on the w/c ratio. As the w/c ratio decreases, the energy input that causes an improvement in the flow properties is reduced. At very low w/c-values (< 0.35), no improvement can be observed. If superplasticiser is added to the cement suspension before sonication, the properties of the cement suspension can be significantly influenced. In sonicated suspensions with superplasticiser, the superplasticiser-induced delay of the set time could be significantly reduced depending on the energy input. Furthermore, the energy input required to reduce the time of solidification is significantly reduced in suspensions with superplasticiser. Based on the observations on cement suspensions, the influence of ultrasound is divided into a dispersing and an accelerating effect. At high w/c-values, the dispersing effect of ultrasound dominates, and the set time is moderately decreased. At lower w/c-values of the cement suspension, the accelerating effect dominates, whereas no or even a negative influence on the workability can be observed. In the next step, the investigations will be extended to the concrete scale with the help of a laboratory plant. Here, the influence of two-stage mixing with ultrasound on the fresh and hardened concrete properties will be discussed. Due to the system set up, which goes hand in hand with the sonication of larger quantities of cement suspension, added further influencing factors to the cement suspension (e.g., Pumping speed, temperature, pressure). As part of the investigations, a concrete composition was produced with as well as without ultrasonic premixing and the fresh and hardened concrete properties were compared. In addition, a comprehensive investigation programme was undertaken to determine essential durability parameters. Based on the experiences with the laboratory device, the ultrasonic premixing system was further developed in several stages and finally used in an industrial concrete plant for concrete production. The results of the concrete investigations examine a significant increase in the early compressive strengths of Portland cement concrete. Here, the compressive strength of 15 MPa, which is required for stripping of concrete components, can be achieved significantly earlier. The slump of the concretes (w/c-value = 0.47) is slightly decreased as a result of sonication, which is in accordance with the results of the investigations on cement suspensions. If an overpressure is applied in the sonication chamber or the suspension is cooled during sonication, the slump can be slightly increased. However, the high early compressive strengths of the non-cooled or non-pressured concrete are no longer achieved. the investigations show that the acceleration potential can be used to either reduce the strength class of the cement without performance loss (e. g. from CEM I 52.5 R to CEM I 42.5 R) or to completely substitute a 4-hour heat treatment. The durability of the concrete is not affected. In the investigations on sulphate, carbonation, chloride penetration or freeze/thaw resistance, neither a positive nor a negative influence can be derived from sonication. Likewise, in an investigation on alkali-silica reaction, no negative influence can be observed due to ultrasonic premixing. Based on these investigations, the ultrasound mixing technology will be further developed in order to decrease the gap between laboratory and industrial production. In the first iteration, the system concept 1 used in the concrete investigations will be modified and used subsequently as system concept 2 for further tests. Here, a new concrete composition with a higher w/c ratio (0.52) is used, through which the compressive strengths can also be significantly increased. In contrast to the first concrete, the slump of this concrete composition is increased, which is used to reduce superplasticiser. This is also in accordance with the observations on Portland cement suspensions, where a clear improvement of the flowability at higher w/c-values is described. For this concrete formulation, a comparison is made with a commercially available hardening accelerator (synthetic C-S-H-seeds). The results show that the acceleration effect of both technologies is comparable. A combination of both technologies leads to a further significant increase in early strength, so a synergistic effect can be assumed. The last iteration stage, the system concept 3, describes how the mixing system is significantly developed within a university spin-off and is used for the first time in a concrete plant for concrete production. The conceptual design of the ultrasonic mixing system for industrial application, focusses on the practicability.it is shown that the mixing system can significantly accelerate the compressive strength development, even in an industrial scale. These results paves the way for optimising precast concrete in terms of sustainability. KW - Beton KW - Beton KW - Nachhaltigkeit KW - Ultraschall Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230112-48919 ER - TY - THES A1 - Piethe, Vivienne T1 - Konfektionierung eines Calciumsulfat-Bindemittelsystems zur Herstellung volumenstabiler Fließestrichmörtel N2 - Bei einem marktüblichen Calciumsulfat-Fließestrich wurden in der Praxis schädigende Volu-menexpansionen festgestellt. Diese sind ein Resultat aus dem Zusammenwirken des einge-setzten Bindemittel-Compounds und einer kritischen Gesteinskörnung. Das Ziel dieser Arbeit ist es, ein Calciumsulfat-Bindemittelsystem zu konfektionieren, welches in der Lage ist, die im Mörtel festgestellten Volumenexpansionen zu unterbinden. Es sollen verschiedene Bindemittel- und Additivzusammensetzungen untersucht werden, welche in Verbindung mit der kritischen Gesteinskörnung die Herstellung eines volumenstabilen Fließestrichs ermöglichen. Dazu soll folgende Fragestellung beantwortet werden: Welche Ursachen hat die Volumenzunahme und wie ist diese zu minimieren bzw. unterbinden? Dabei werden unterschiedliche Bindemittelrezepturen aus α-Halbhydrat, Thermoanhydrit und Naturanhydrit, sowie verschiedene Additivzusammensetzungen hergestellt und untersucht. Durch Längenänderungsmessungen in der Schwindrinne werden die Einflüsse der Binde-mittel, der Additivzusammensetzungen und der Wasser/Bindemittel-Werte auf das Län-genänderungsverhalten untersucht. Mittels Variation der einzelnen Compound-Bestandteile kann festgestellt werden, dass der Stabilisierer die Längenänderung negativ beeinflusst. Dieser bindet freies Wasser, welches für eine Reaktion zwischen Bindemittel und Gesteins-körnung im plastischen Zustand nicht mehr zur Verfügung steht. Diese Reaktion kann folglich erst im erhärteten Zustand ablaufen und verursacht die schädigende Volumenexpansion. Abschließend wurde ein Bindemittel-Compound konfektioniert, welcher ohne Zusatz von Stabilisierern in Zusammenhang mit der kritischen Gesteinskörnung volumenstabil ist und keine Schäden auslöst. KW - Calciumsulfat KW - Gips KW - Fließestrich KW - Volumenstabilität KW - Calciumsulfatfließestrich Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190902-39445 ER -