TY - JOUR A1 - Thai, Chien H. A1 - Ferreira, A.J.M. A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon A1 - Nguyen-Xuan, Hung T1 - Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory JF - European Journal of Mechanics N2 - Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 89 EP - 108 ER - TY - JOUR A1 - Ghasemi, Hamid A1 - Brighenti, Roberto A1 - Zhuang, Xiaoying A1 - Muthu, Jacob A1 - Rabczuk, Timon T1 - Sequential reliability based optimization of fiber content and dispersion in fiber reinforced composite by using NURBS finite elements JF - Structural and Multidisciplinary Optimization N2 - Sequential reliability based optimization of fiber content and dispersion in fiber reinforced composite by using NURBS finite elements KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Chen, Lei A1 - Nguyen-Thanh, Nhon A1 - Nguyen-Xuan, Hung A1 - Rabczuk, Timon A1 - Bordas, Stéphane Pierre Alain A1 - Limbert, Georges T1 - Explicit finite deformation analysis of isogeometric membranes JF - Computer Methods in Applied Mechanics and Engineering N2 - Explicit finite deformation analysis of isogeometric membranes KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 104 EP - 130 ER - TY - JOUR A1 - Natarajan, S. A1 - Chakraborty, S. A1 - Thangavel, M. A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon T1 - Size dependent free flexural vibration behavior of functionally graded nanoplates JF - Computational Materials Science N2 - Size dependent free flexural vibration behavior of functionally graded nanoplates KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 SP - 74 EP - 80 ER - TY - JOUR A1 - Ilyani Akmar, A.B. A1 - Kramer, O. A1 - Rabczuk, Timon T1 - Multi-objective evolutionary optimization of sandwich structures: An evaluation by elitist non-dominated sorting evolution strategy JF - American Journal of Engineering and Applied Sciences N2 - In this study, an application of evolutionary multi-objective optimization algorithms on the optimization of sandwich structures is presented. The solution strategy is known as Elitist Non-Dominated Sorting Evolution Strategy (ENSES) wherein Evolution Strategies (ES) as Evolutionary Algorithm (EA) in the elitist Non-dominated Sorting Genetic algorithm (NSGA-II) procedure. Evolutionary algorithm seems a compatible approach to resolve multi-objective optimization problems because it is inspired by natural evolution, which closely linked to Artificial Intelligence (AI) techniques and elitism has shown an important factor for improving evolutionary multi-objective search. In order to evaluate the notion of performance by ENSES, the well-known study case of sandwich structures are reconsidered. For Case 1, the goals of the multi-objective optimization are minimization of the deflection and the weight of the sandwich structures. The length, the core and skin thicknesses are the design variables of Case 1. For Case 2, the objective functions are the fabrication cost, the beam weight and the end deflection of the sandwich structures. There are four design variables i.e., the weld height, the weld length, the beam depth and the beam width in Case 2. Numerical results are presented in terms of Paretooptimal solutions for both evaluated cases. KW - Optimierung KW - Stahlbau KW - Multi-objective Evolutionary Optimization, Elitist Non- Dominated Sorting Evolution Strategy (ENSES), Sandwich Structure, Pareto-Optimal Solutions, Evolutionary Algorithm Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170418-31402 SP - 185 EP - 201 ER - TY - JOUR A1 - Mortazavi, Bohayra A1 - Pereira, Luiz Felipe C. A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon T1 - Modelling heat conduction in polycrystalline hexagonal boron-nitride films JF - Scientific Reports N2 - We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. KW - Wärmeleitfähigkeit KW - Bornitrid KW - Finite-Elemente-Methode Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170425-31534 ER - TY - JOUR A1 - Guo, Hongwei A1 - Zhuang, Xiaoying A1 - Chen, Pengwan A1 - Alajlan, Naif A1 - Rabczuk, Timon T1 - Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis JF - Engineering with Computers N2 - In this work, we present a deep collocation method (DCM) for three-dimensional potential problems in non-homogeneous media. This approach utilizes a physics-informed neural network with material transfer learning reducing the solution of the non-homogeneous partial differential equations to an optimization problem. We tested different configurations of the physics-informed neural network including smooth activation functions, sampling methods for collocation points generation and combined optimizers. A material transfer learning technique is utilized for non-homogeneous media with different material gradations and parameters, which enhance the generality and robustness of the proposed method. In order to identify the most influential parameters of the network configuration, we carried out a global sensitivity analysis. Finally, we provide a convergence proof of our DCM. The approach is validated through several benchmark problems, also testing different material variations. KW - Deep learning KW - Kollokationsmethode KW - Collocation method KW - Potential problem KW - Activation function KW - Transfer learning Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220811-46764 UR - https://link.springer.com/article/10.1007/s00366-022-01633-6 VL - 2022 SP - 1 EP - 22 ER - TY - JOUR A1 - Zhuang, Xiaoying A1 - Huang, Runqiu A1 - Liang, Chao A1 - Rabczuk, Timon T1 - A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage JF - Mathematical Problems in Engineering N2 - Renewable energy resources such as wind and solar are intermittent, which causes instability when being connected to utility grid of electricity. Compressed air energy storage (CAES) provides an economic and technical viable solution to this problem by utilizing subsurface rock cavern to store the electricity generated by renewable energy in the form of compressed air. Though CAES has been used for over three decades, it is only restricted to salt rock or aquifers for air tightness reason. In this paper, the technical feasibility of utilizing hard rock for CAES is investigated by using a coupled thermo-hydro-mechanical (THM) modelling of nonisothermal gas flow. Governing equations are derived from the rules of energy balance, mass balance, and static equilibrium. Cyclic volumetric mass source and heat source models are applied to simulate the gas injection and production. Evaluation is carried out for intact rock and rock with discrete crack, respectively. In both cases, the heat and pressure losses using air mass control and supplementary air injection are compared. KW - Energiespeicherung KW - Druckluft KW - Kaverne KW - Modellierung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170428-31726 ER - TY - JOUR A1 - Amani, Jafar A1 - Saboor Bagherzadeh, Amir A1 - Rabczuk, Timon T1 - Error estimate and adaptive refinement in mixed discrete least squares meshless method JF - Mathematical Problems in Engineering N2 - The node moving and multistage node enrichment adaptive refinement procedures are extended in mixed discrete least squares meshless (MDLSM) method for efficient analysis of elasticity problems. In the formulation of MDLSM method, mixed formulation is accepted to avoid second-order differentiation of shape functions and to obtain displacements and stresses simultaneously. In the refinement procedures, a robust error estimator based on the value of the least square residuals functional of the governing differential equations and its boundaries at nodal points is used which is inherently available from the MDLSM formulation and can efficiently identify the zones with higher numerical errors. The results are compared with the refinement procedures in the irreducible formulation of discrete least squares meshless (DLSM) method and show the accuracy and efficiency of the proposed procedures. Also, the comparison of the error norms and convergence rate show the fidelity of the proposed adaptive refinement procedures in the MDLSM method. KW - Elastizität KW - Fehlerabschätzung KW - MDLSM method Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170413-31181 ER - TY - JOUR A1 - Nguyen-Thoi, T. A1 - Rabczuk, Timon A1 - Lam-Phat, T. A1 - Ho-Huu, V. A1 - Phung-Van, P. T1 - Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3) JF - Theoretical and Applied Fracture Mechanics N2 - Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3) KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Zhuang, Xiaoying A1 - Huang, Runqiu A1 - Rabczuk, Timon A1 - Liang, C. T1 - A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage JF - Mathematical Problems in Engineering N2 - A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Amiri, Fatemeh A1 - Millán, D. A1 - Shen, Y. A1 - Rabczuk, Timon A1 - Arroyo, M. T1 - Phase-field modeling of fracture in linear thin shells JF - Theoretical and Applied Fracture Mechanics N2 - Phase-field modeling of fracture in linear thin shells KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 102 EP - 109 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Wang, L. A1 - Jiang, Jin-Wu A1 - Wang, Z. A1 - Guo, Wanlin A1 - Rabczuk, Timon T1 - A comparative study of two molecular mechanics models based on harmonic potentials JF - Journal of Applied Physics N2 - A comparative study of two molecular mechanics models based on harmonic potentials KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Park, Harold S. A1 - Rabczuk, Timon T1 - MoS2 nanoresonators: intrinsically better than graphene? JF - Nanoscale N2 - MoS2 nanoresonators: intrinsically better than graphene? KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 3618 EP - 3625 ER - TY - JOUR A1 - Mortazavi, Bohayra A1 - Cuniberti, G. A1 - Rabczuk, Timon T1 - Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study JF - Computational Materials Science N2 - Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 285 EP - 289 ER - TY - JOUR A1 - Areias, Pedro A1 - Pinto da Costa, A. A1 - Rabczuk, Timon A1 - Queiros de Melo, F. J. M. A1 - Dias-da-Costa, D. T1 - An alternative formulation for quasi-static frictional and cohesive contact problems JF - Computational Mechanics N2 - An alternative formulation for quasi-static frictional and cohesive contact problems KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 807 EP - 824 ER - TY - JOUR A1 - Budarapu, Pattabhi Ramaiah A1 - Narayana, T.S.S. A1 - Rammohan, B. A1 - Rabczuk, Timon T1 - Directionality of sound radiation from rectangular panels JF - Applied Acoustics N2 - Directionality of sound radiation from rectangular panels KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 128 EP - 140 ER - TY - JOUR A1 - Zhang, Yancheng A1 - Zhao, Jiyun A1 - Wei, Ning A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon T1 - Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer JF - Composites Part B: Engineering N2 - Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 SP - 1714 EP - 1721 ER - TY - JOUR A1 - Budarapu, Pattabhi Ramaiah A1 - Gracie, Robert A1 - Yang, Shih-Wei A1 - Zhuang, Xiaoying A1 - Rabczuk, Timon T1 - Efficient Coarse Graining in Multiscale Modeling of Fracture JF - Theoretical and Applied Fracture Mechanics N2 - Efficient Coarse Graining in Multiscale Modeling of Fracture KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 126 EP - 143 ER - TY - JOUR A1 - Arash, Behrouz A1 - Rabczuk, Timon A1 - Jiang, Jin-Wu T1 - Nanoresonators and their applications: a state of the art review JF - Applied Physics Reviews N2 - Nanoresonators and their applications: a state of the art review KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 ER - TY - JOUR A1 - Mortazavi, Bohayra A1 - Rabczuk, Timon T1 - Multiscale modeling of heat conduction in graphene laminates JF - Carbon N2 - Multiscale modeling of heat conduction in graphene laminates KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 1 EP - 7 ER - TY - JOUR A1 - Chen, Lei A1 - Rabczuk, Timon A1 - Liu, G.R. A1 - Zeng, K.Y. A1 - Kerfriden, Pierre A1 - Bordas, Stéphane Pierre Alain T1 - Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth JF - Computer Methods in Applied Mechanics and Engineering N2 - This paper presents a strain smoothing procedure for the extended finite element method (XFEM). The resulting “edge-based” smoothed extended finite element method (ESm-XFEM) is tailored to linear elastic fracture mechanics and, in this context, to outperform the standard XFEM. In the XFEM, the displacement-based approximation is enriched by the Heaviside and asymptotic crack tip functions using the framework of partition of unity. This eliminates the need for the mesh alignment with the crack and re-meshing, as the crack evolves. Edge-based smoothing (ES) relies on a generalized smoothing operation over smoothing domains associated with edges of simplex meshes, and produces a softening effect leading to a close-to-exact stiffness, “super-convergence” and “ultra-accurate” solutions. The present method takes advantage of both the ES-FEM and the XFEM. Thanks to the use of strain smoothing, the subdivision of elements intersected by discontinuities and of integrating the (singular) derivatives of the approximation functions is suppressed via transforming interior integration into boundary integration. Numerical examples show that the proposed method improves significantly the accuracy of stress intensity factors and achieves a near optimal convergence rate in the energy norm even without geometrical enrichment or blending correction. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.cma.2011.08.013 ER - TY - JOUR A1 - Simpson, R. A1 - Bordas, Stéphane Pierre Alain A1 - Trevelyan, J. A1 - Kerfriden, Pierre A1 - Rabczuk, Timon T1 - An Isogeometric Boundary Element Method for elastostatic analysis JF - Computer Methods in Applied Mechanics and Engineering N2 - The concept of isogeometric analysis, where functions that are used to describe geometry in CAD software are used to approximate the unknown fields in numerical simulations, has received great attention in recent years. The method has the potential to have profound impact on engineering design, since the task of meshing, which in some cases can add significant overhead, has been circumvented. Much of the research effort has been focused on finite element implementations of the isogeometric concept, but at present, little has been seen on the application to the Boundary Element Method. The current paper proposes an Isogeometric Boundary Element Method (BEM), which we term IGABEM, applied to two-dimensional elastostatic problems using Non-Uniform Rational B-Splines (NURBS). We find it is a natural fit with the isogeometric concept since both the NURBS approximation and BEM deal with quantities entirely on the boundary. The method is verified against analytical solutions where it is seen that superior accuracies are achieved over a conventional quadratic isoparametric BEM implementation. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.cma.2011.08.008 ER - TY - JOUR A1 - Nguyen-Thanh, Nhon A1 - Rabczuk, Timon A1 - Nguyen-Xuan, Hung A1 - Bordas, Stéphane Pierre Alain T1 - An alternative alpha finite element method with stabilized discrete shear gap technique for analysis of Mindlin-Reissner plates JF - Finite Elements in Analysis & Design N2 - An alternative alpha finite element method with stabilized discrete shear gap technique for analysis of Mindlin-Reissner plates KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2011 SP - 519 EP - 535 ER - TY - JOUR A1 - Nguyen-Xuan, Hung A1 - Rabczuk, Timon A1 - Nguyen-Thanh, Nhon A1 - Nguyen-Thoi, T. A1 - Bordas, Stéphane Pierre Alain T1 - A node-based smoothed finite element method (NS-FEM) for analysis of Reissner-Mindlin plates JF - Computational Mechanics N2 - A node-based smoothed finite element method (NS-FEM) for analysis of Reissner-Mindlin plates KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2010 SP - 679 EP - 701 ER - TY - JOUR A1 - Nguyen-Thanh, Nhon A1 - Rabczuk, Timon A1 - Nguyen-Xuan, Hung A1 - Bordas, Stéphane Pierre Alain T1 - An alternative alpha finite element method (A?FEM) free and forced vibration analysis of solids using triangular meshes JF - Journal of Computational and Applied Mathematics N2 - An alternative alpha finite element method (A?FEM) free and forced vibration analysis of solids using triangular meshes KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2009 SP - 2112 EP - 2135 ER - TY - JOUR A1 - Nguyen-Thanh, Nhon A1 - Nguyen-Xuan, Hung A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon T1 - Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids JF - Computer Methods in Applied Mechanics and Engineering N2 - Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2011 SP - 1892 EP - 1908 ER - TY - JOUR A1 - Nguyen-Xuan, Hung A1 - Liu, G.R. A1 - Bordas, Stéphane Pierre Alain A1 - Natarajan, S. A1 - Rabczuk, Timon T1 - An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order JF - Computer Methods in Applied Mechanics and Engineering N2 - An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 SP - 252 EP - 273 ER - TY - JOUR A1 - Nguyen-Xuan, Hung A1 - Nguyen, Hiep Vinh A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon A1 - Duflot, Marc T1 - A cell-based smoothed finite element method for three dimensional solid structures JF - KSCE Journal of Civil Engineering N2 - This paper extends further the strain smoothing technique in finite elements to 8-noded hexahedral elements (CS-FEM-H8). The idea behind the present method is similar to the cell-based smoothed 4-noded quadrilateral finite elements (CS-FEM-Q4). In CSFEM, the smoothing domains are created based on elements, and each element can be further subdivided into 1 or several smoothing cells. It is observed that: 1) The CS-FEM using a single smoothing cell can produce higher stress accuracy, but insufficient rank and poor displacement accuracy; 2) The CS-FEM using several smoothing cells has proper rank, good displacement accuracy, but lower stress accuracy, especially for nearly incompressible and bending dominant problems. We therefore propose 1) an extension of strain smoothing to 8-noded hexahedral elements and 2) an alternative CS-FEM form, which associates the single smoothing cell issue with multi-smoothing cell one via a stabilization technique. Several numerical examples are provided to show the reliability and accuracy of the present formulation. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1007/s12205-012-1515-7 SP - 1230 EP - 1242 ER - TY - JOUR A1 - Budarapu, Pattabhi Ramaiah A1 - Gracie, Robert A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon T1 - An adaptive multiscale method for quasi-static crack growth JF - Computational Mechanics N2 - This paper proposes an adaptive atomistic- continuum numerical method for quasi-static crack growth. The phantom node method is used to model the crack in the continuum region and a molecular statics model is used near the crack tip. To ensure self-consistency in the bulk, a virtual atom cluster is used to model the material of the coarse scale. The coupling between the coarse scale and fine scale is realized through ghost atoms. The ghost atom positions are interpolated from the coarse scale solution and enforced as boundary conditions on the fine scale. The fine scale region is adaptively enlarged as the crack propagates and the region behind the crack tip is adaptively coarsened. An energy criterion is used to detect the crack tip location. The triangular lattice in the fine scale region corresponds to the lattice structure of the (111) plane of an FCC crystal. The Lennard-Jones potential is used to model the atom–atom interactions. The method is implemented in two dimensions. The results are compared to pure atomistic simulations; they show excellent agreement. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1007/s00466-013-0952-6 SP - 1129 EP - 1148 ER - TY - JOUR A1 - Talebi, Hossein A1 - Silani, Mohammad A1 - Bordas, Stéphane Pierre Alain A1 - Kerfriden, Pierre A1 - Rabczuk, Timon T1 - Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture JF - International Journal for Multiscale Computational Engineering N2 - Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Beex, L.A.A. A1 - Kerfriden, Pierre A1 - Rabczuk, Timon A1 - Bordas, Stéphane Pierre Alain T1 - Quasicontinuum-based multiscale approaches for plate-like beam lattices experiencing in-plane and out-of-plane deformation JF - Computer Methods in Applied Mechanics and Engineering N2 - Quasicontinuum-based multiscale approaches for plate-like beam lattices experiencing in-plane and out-of-plane deformation KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Nguyen, V.P. A1 - Kerfriden, Pierre A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon T1 - Isogeometric analysis suitable trivariate NURBS representation of composite panels with a new offset algorithm JF - Computer-Aided Design N2 - Isogeometric analysis suitable trivariate NURBS representation of composite panels with a new offset algorithm KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Kerfriden, Pierre A1 - Goury, O. A1 - Rabczuk, Timon A1 - Bordas, Stéphane Pierre Alain T1 - A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics JF - Computer Methods in Applied Mechanics and Engineering N2 - A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 SP - 169 EP - 188 ER - TY - JOUR A1 - Kerfriden, Pierre A1 - Schmidt, K.M. A1 - Rabczuk, Timon A1 - Bordas, Stéphane Pierre Alain T1 - Statistical extraction of process zones and representative subspaces in fracture of random composites JF - International Journal for Multiscale Computational Engineering N2 - Statistical extraction of process zones and representative subspaces in fracture of random composites KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Talebi, Hossein A1 - Silani, Mohammad A1 - Bordas, Stéphane Pierre Alain A1 - Kerfriden, Pierre A1 - Rabczuk, Timon T1 - A computational library for multiscale modeling of material failure JF - Computational Mechanics N2 - A computational library for multiscale modeling of material failure KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Bakar, I. A1 - Kramer, O. A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon T1 - Optimization of Elastic Properties and Weaving Patterns of Woven Composites JF - Composite Structures N2 - Optimization of Elastic Properties and Weaving Patterns of Woven Composites KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 SP - 575 EP - 591 ER - TY - JOUR A1 - Ilyani Akmar, A.B. A1 - Lahmer, Tom A1 - Bordas, Stéphane Pierre Alain A1 - Beex, L.A.A. A1 - Rabczuk, Timon T1 - Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties JF - Composite Structures N2 - Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.compstruct.2014.04.014 SP - 1 EP - 17 ER - TY - JOUR A1 - Thai, Chien H. A1 - Nguyen-Xuan, Hung A1 - Bordas, Stéphane Pierre Alain A1 - Nguyen-Thanh, Nhon A1 - Rabczuk, Timon T1 - Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory JF - Mechanics of Advanced Materials and Structures N2 - Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 451 EP - 469 ER - TY - JOUR A1 - Yang, Shih-Wei A1 - Budarapu, Pattabhi Ramaiah A1 - Mahapatra, D.R. A1 - Bordas, Stéphane Pierre Alain A1 - Zi, Goangseup A1 - Rabczuk, Timon T1 - A Meshless Adaptive Multiscale Method for Fracture JF - Computational Materials Science N2 - A Meshless Adaptive Multiscale Method for Fracture KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 382 EP - 395 ER -