TY - CHAP
A1 - Wolff, Sebastian
ED - Gürlebeck, Klaus
ED - Könke, Carsten
T1 - NODALLY INTEGRATED FINITE ELEMENTS
N2 - Nodal integration of finite elements has been investigated recently. Compared with full integration it shows better convergence when applied to incompressible media, allows easier remeshing and highly reduces the number of material evaluation points thus improving efficiency. Furthermore, understanding it may help to create new integration schemes in meshless methods as well. The new integration technique requires a nodally averaged deformation gradient. For the tetrahedral element it is possible to formulate a nodal strain which passes the patch test. On the downside, it introduces non-physical low energy modes. Most of these "spurious modes" are local deformation maps of neighbouring elements. Present stabilization schemes rely on adding a stabilizing potential to the strain energy. The stabilization is discussed within this article. Its drawbacks are easily identified within numerical experiments: Nonlinear material laws are not well represented. Plastic strains may often be underestimated. Geometrically nonlinear stabilization greatly reduces computational efficiency. The article reinterpretes nodal integration in terms of imposing a nonconforming C0-continuous strain field on the structure. By doing so, the origins of the spurious modes are discussed and two methods are presented that solve this problem. First, a geometric constraint is formulated and solved using a mixed formulation of Hu-Washizu type. This assumption leads to a consistent representation of the strain energy while eliminating spurious modes. The solution is exact, but only of theoretical interest since it produces global support. Second, an integration scheme is presented that approximates the stabilization criterion. The latter leads to a highly efficient scheme. It can even be extended to other finite element types such as hexahedrals. Numerical efficiency, convergence behaviour and stability of the new method is validated using linear tetrahedral and hexahedral elements.
KW - Angewandte Informatik
KW - Angewandte Mathematik
KW - Architektur
KW - Computerunterstütztes Verfahren
KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing
Y1 - 2010
U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-29028
UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html
SN - 1611-4086
ER -