TY - CHAP A1 - De Aguinaga, José Guillermo ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - INFLUENCE OF DIFFERENT DATA TYPES FOR THE ESTIMATION OF HYDROMECHANICAL PARAMETERS FOR A WATER RETAINING DAM USING SYNTHETIC DATA T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The present research analyses the error on prediction obtained under different data availability scenarios to determine which measurements contribute to an improvement of model prognosis and which not. A fully coupled 2D hydromechanical model of a water retaining dam is taken as an example. Here, the mean effective stress in the porous skeleton is reduced due to an increase in pore water pressure under drawdown conditions. Relevant model parameters are ranked by scaled sensitivities, Particle Swarm Optimization is applied to determine the optimal parameter values and model validation is performed to determine the magnitude of error forecast. We compare the predictions of the optimized models with results from a forward run of the reference model to obtain actual prediction errors. The analyses presented here were performed to 31 data sets of 100 observations of varying data types. Calibrating with multiple information types instead of only one sort, brings better calibration results and improvement in model prognosis. However, when using several types of information the number of observations have to be increased to be able to cover a representative part of the model domain; otherwise a compromise between data availability and domain coverage prove best. Which type of information for calibration contributes to the best prognoses, could not be determined in advance. For the error in model prognosis does not depends on the error in calibration, but on the parameter error, which unfortunately can not be determined in reality since we do not know its real value. Excellent calibration fits with parameters’ values near the limits of reasonable physical values, provided the highest prognosis errors. While models which included excess pore pressure values for calibration provided the best prognosis, independent of the calibration fit. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170306-27607 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - JOUR A1 - Aguinaga, José Guillermo De T1 - Error in prediction due to data type availability in a coupled hydro-mechanical model JF - Electronic Journal of Geotechnical Engineering N2 - Different types of data provide different type of information. The present research analyzes the error on prediction obtained under different data type availability for calibration. The contribution of different measurement types to model calibration and prognosis are evaluated. A coupled 2D hydro-mechanical model of a water retaining dam is taken as an example. Here, the mean effective stress in the porous skeleton is reduced due to an increase in pore water pressure under drawdown conditions. Relevant model parameters are identified by scaled sensitivities. Then, Particle Swarm Optimization is applied to determine the optimal parameter values and finally, the error in prognosis is determined. We compare the predictions of the optimized models with results from a forward run of the reference model to obtain the actual prediction errors. The analyses presented here were performed calibrating the hydro-mechanical model to 31 data sets of 100 observations of varying data types. The prognosis results improve when using diversified information for calibration. However, when using several types of information, the number of observations has to be increased to be able to cover a representative part of the model domain. For an analysis with constant number of observations, a compromise between data type availability and domain coverage proves to be the best solution. Which type of calibration information contributes to the best prognoses could not be determined in advance. The error in model prognosis does not depend on the error in calibration, but on the parameter error, which unfortunately cannot be determined in inverse problems since we do not know its real value. The best prognoses were obtained independent of calibration fit. However, excellent calibration fits led to an increase in prognosis error variation. In the case of excellent fits; parameters' values came near the limits of reasonable physical values more often. To improve the prognoses reliability, the expected value of the parameters should be considered as prior information on the optimization algorithm. KW - Sensitivitätsanalyse KW - Damm KW - Embankment, sensitivity analysis, parameter identification, Particle Swarm Optimization KW - Fehlerabschätzung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170413-31170 UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-84868020397&partnerID=40&md5=72c87bb112839303c1ef9a4afa8c6421 SP - 2459 EP - 2471 ER -