TY - CHAP A1 - Hildebrand, Jörg A1 - Wudtke, Idna A1 - Werner, Frank ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - MÖGLICHKEITEN DER MATHEMATISCHEN BESCHREIBUNG VON PHASENUMWANDLUNGEN IM STAHL BEI SCHWEIß- UND WIG-NACHBEHANDLUNGSPROZESSEN N2 - In the final decades many scientists were occupied intensively with the change of materials during a process and their mathematical descriptions. The extensive and extensive analyses were supported by the advanced computer science. A mathematical description of the phase transformation is a condition for a realistic FE simulation of the state of microstructure. It is possible to simulate the temperature and stress field also in complex construction based on the state of microstructure. In the last years a great number of mathematical models were expanded to describe the transformation between different phases. For the development of the models for transformation kinetics it is practical to subdivide into isothermal and non-isothermal processes according to the thermal conditions. Some models for the description of the transformation with non-isothermal processes represent extensions for isothermal of processes. A part of parameters for the describing equations can be derived from the time-temperature-transformation diagrams in the literature. Furthermore the two possibilities of transformation are considered by different models - diffusion controlled and not diffusion controlled. The material-specific characteristics can be simulated during the transformation for each individual phase in a realistic FE analyses. Also new materials can be simulated after a modification of the parameters in the describing equations for the phase transformation. The effects in the temperature and stress field are a substantial reason for the investigation of the phase transformation during the welding and TIG-dressing processes. KW - Architektur KW - CAD KW - Computerunterstütztes Verfahren Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170327-29684 UR - http://euklid.bauing.uni-weimar.de/ikm2006/index.php_lang=de&what=papers.html ER - TY - CHAP A1 - Wudtke, Idna A1 - Werner, Frank ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - MODELLING OF MATERIAL PHENOMENA OF STEEL IN CONSTITUTIVE RELATIONS IN CONTEXT OF WELDING N2 - The application of partly decoupled approach by means of continuum mechanics facilitates the calculation of structural responses due to welding. The numerical results demonstrate the ability of a qualitative prediction of welded connections. As it is intended to integrate the local effects of a joint in structural analysis of steel constructions, it is necessary to meet higher approaches towards quality. The wide array of material parameters are presented, which are affecting the thermal, metallurgical and mechanical behavior, and which have to be identified. For that purpose further investigations are necessary to analyze the sensitivity of the models towards different material properties. The experimental determination of every material parameter is not possible due to the extraordinary laborious efforts needed. Besides that, experimentally identified parameters can be applied only for the tested steel quality for measured temperature-time regimes. For that reason alternative approaches for identification of material parameters, such as optimization strategies, have to be applied. After a definition of material parameters a quantitative prediction of welded connections will also be possible. Numerical results show the effect of phase transformation, activated by welding process, on residual stress state. As these phenomena occur in local areas in the range of crystal and grain sizes, the description of microscopic phenomena and their propagation on a macroscopic level due to approaches of homogenization might be expedient. Nevertheless, one should bear in mind, the increasing number of material parameters as well as the complexity of their experimental determination. Thus the microscopic approach should always be investigated under the scope of ability and efficiency of a required prediction. Under certain circumstances a step backwards, adopting a phenomenological approach, also can be beneficial. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-29032 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Wudtke, Idna ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - CONSTITUTIVE MODELING OF CRYSTALLINE MATERIALS WITH TEXTURE CHARACTERISTICS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The analysis of the response of complex structural systems requires the description of the material constitutive relations by means of an appropriate material model. The level of abstraction of such model may strongly affect the quality of the prognosis of the whole structure. In context to this fact, it is necessary to describe the material in a convenient sense as exact but as simple as possible. All material phenomena of crystalline materials e.g. steel, affecting the behavior of the structure, rely on physical effects which are interacting over spatial scales from subatomic to macroscopic range. Nevertheless, if the material is microscopically heterogenic, it might be appropriate to use phenomenological models for the purpose of civil engineering. Although constantly applied, these models are insufficient for steel materials with microscopic characteristics such as texture, typically occurring in hot rolled steel members or heat affected zones of welded joints. Hence, texture is manifested in crystalline materials as a regular crystallographic structure and crystallite orientation, influencing macroscopic material properties. The analysis of structural response of material with texture (e.g. rolled steel or heat affected zone of a welded joint) obliges the extension of the phenomenological material description of macroscopic scale by means of microscopic information. This paper introduces an enrichment approach for material models based on a hierarchical multiscale methodology. This has been done by describing the grain texture on a mesoscopic scale and coupling it with macroscopic constitutive relations by means of homogenization. Due to a variety of available homogenization methods, the question of an assessment of coupling quality arises. The applicability of the method and the effect of the coupling method on the reliability of the response are presented on an example. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27910 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER -