TY - INPR A1 - Wetzstein, Gordon A1 - Bimber, Oliver T1 - A Generalized Approach to Radiometric N2 - We propose a novel method that applies the light transport matrix for performing an image-based radiometric compensation which accounts for all possible types of light modulation. For practical application the matrix is decomposed into clusters of mutually influencing projector and camera pixels. The compensation is modeled as a linear system that can be solved with respect to the projector patterns. Precomputing the inverse light transport in combination with an efficient implementation on the GPU makes interactive compensation rates possible. Our generalized method unifies existing approaches that address individual problems. Based on examples, we show that it is possible to project corrected images onto complex surfaces such as an inter-reflecting statuette, glossy wallpaper, or through highly-refractive glass. Furthermore, we illustrate that a side-effect of our approach is an increase in the overall sharpness of defocused projections. KW - Association for Computing Machinery / Special Interest Group on Graphics KW - CGI KW - Maschinelles Sehen Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-7625 ER - TY - RPRT A1 - Wetzstein, Gordon A1 - Bimber, Oliver T1 - Radiometric Compensation through Inverse Light Transport N2 - Radiometric compensation techniques allow seamless projections onto complex everyday surfaces. Implemented with projector-camera systems they support the presentation of visual content in situations where projection-optimized screens are not available or not desired - as in museums, historic sites, air-plane cabins, or stage performances. We propose a novel approach that employs the full light transport between a projector and a camera to account for many illumination aspects, such as interreflections, refractions and defocus. Precomputing the inverse light transport in combination with an efficient implementation on the GPU makes the real-time compensation of captured local and global light modulations possible. KW - Association for Computing Machinery / Special Interest Group on Graphics KW - CGI KW - Maschinelles Sehen KW - Projektionssystem KW - radiometrische Kompensation KW - Licht Transport KW - Projector-Camera Systems KW - Radiometric Compensation KW - Inverse Light Transport Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8126 ER -