TY - JOUR A1 - Wiegand, Torben A1 - Osburg, Andrea T1 - Synthesis, Curing and Thermal Behavior of Amine Hardeners from Potentially Renewable Sources JF - Polymers N2 - Research into bio-based epoxy resins has intensified in recent decades. Here, it is of great importance to use raw materials whose use does not compete with food production. In addition, the performance of the newly developed materials should be comparable to that of conventional products. Possible starting materials are lignin degradation products, such as vanillin and syringaldehyde, for which new synthesis routes to the desired products must be found and their properties determined. In this article, the first synthesis of two amine hardeners, starting with vanillin and syringaldehyde, using the Smiles rearrangement reaction is reported. The amine hardeners were mixed with bisphenol A diglycidyl ether, and the curing was compared to isophorone diamine, 4-4′-diaminodiphenyl sulfone, and 4-Aminonbenzylamine by means of differential scanning calorimetry. It was found that the two amines prepared are cold-curing. As TG-MS studies showed, the thermal stability of at least one of the polymers prepared with the potentially bio-based amines is comparable to that of the polymer prepared with isophorone diamine, and similar degradation products are formed during pyrolysis. KW - Epoxide KW - Epoxidharz KW - Polymere KW - epoxy KW - amine hardener KW - curing agent KW - bio-based KW - vanillin KW - OA-Publikationsfonds2023 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230524-63745 UR - https://www.mdpi.com/2073-4360/15/4/990 VL - 2023 IS - volume 15, issue 4, article 990 SP - 1 EP - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schirmer, Ulrike A1 - Osburg, Andrea T1 - A new method for the quantification of adsorbed styrene acrylate copolymer particles on cementitious surfaces: a critical comparative study JF - SN Applied Sciences N2 - The amount of adsorbed styrene acrylate copolymer (SA) particles on cementitious surfaces at the early stage of hydration was quantitatively determined using three different methodological approaches: the depletion method, the visible spectrophotometry (VIS) and the thermo-gravimetry coupled with mass spectrometry (TG–MS). Considering the advantages and disadvantages of each method, including the respectively required sample preparation, the results for four polymer-modified cement pastes, varying in polymer content and cement fineness, were evaluated. To some extent, significant discrepancies in the adsorption degrees were observed. There is a tendency that significantly lower amounts of adsorbed polymers were identified using TG-MS compared to values determined with the depletion method. Spectrophotometrically generated values were ​​lying in between these extremes. This tendency was found for three of the four cement pastes examined and is originated in sample preparation and methodical limitations. The main influencing factor is the falsification of the polymer concentration in the liquid phase during centrifugation. Interactions in the interface between sediment and supernatant are the cause. The newly developed method, using TG–MS for the quantification of SA particles, proved to be suitable for dealing with these revealed issues. Here, instead of the fluid phase, the sediment is examined with regard to the polymer content, on which the influence of centrifugation is considerably lower. KW - Zement KW - Polymere KW - polymer adsorption KW - cement KW - visible spectrophotometry KW - depletion method KW - mass spectrometry Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210804-44729 UR - https://link.springer.com/article/10.1007/s42452-020-03825-5 VL - 2020 IS - Volume 2, article 2061 SP - 1 EP - 11 PB - Springer CY - Heidelberg ER -