TY - JOUR A1 - Harirchian, Ehsan A1 - Lahmer, Tom A1 - Buddhiraju, Sreekanth A1 - Mohammad, Kifaytullah A1 - Mosavi, Amir T1 - Earthquake Safety Assessment of Buildings through Rapid Visual Screening JF - Buildings N2 - Earthquake is among the most devastating natural disasters causing severe economical, environmental, and social destruction. Earthquake safety assessment and building hazard monitoring can highly contribute to urban sustainability through identification and insight into optimum materials and structures. While the vulnerability of structures mainly depends on the structural resistance, the safety assessment of buildings can be highly challenging. In this paper, we consider the Rapid Visual Screening (RVS) method, which is a qualitative procedure for estimating structural scores for buildings suitable for medium- to high-seismic cases. This paper presents an overview of the common RVS methods, i.e., FEMA P-154, IITK-GGSDMA, and EMPI. To examine the accuracy and validation, a practical comparison is performed between their assessment and observed damage of reinforced concrete buildings from a street survey in the Bingöl region, Turkey, after the 1 May 2003 earthquake. The results demonstrate that the application of RVS methods for preliminary damage estimation is a vital tool. Furthermore, the comparative analysis showed that FEMA P-154 creates an assessment that overestimates damage states and is not economically viable, while EMPI and IITK-GGSDMA provide more accurate and practical estimation, respectively. KW - Maschinelles Lernen KW - Machine learning KW - Erdbeben KW - buildings KW - earthquake safety assessment KW - earthquake KW - extreme events KW - seismic assessment KW - natural hazard KW - mitigation KW - rapid visual screening Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200331-41153 UR - https://www.mdpi.com/2075-5309/10/3/51 VL - 2020 IS - Volume 10, Issue 3 PB - MDPI ER - TY - JOUR A1 - Hassannataj Joloudari, Javad A1 - Hassannataj Joloudari, Edris A1 - Saadatfar, Hamid A1 - GhasemiGol, Mohammad A1 - Razavi, Seyyed Mohammad A1 - Mosavi, Amir A1 - Nabipour, Narjes A1 - Shamshirband, Shahaboddin A1 - Nadai, Laszlo T1 - Coronary Artery Disease Diagnosis: Ranking the Significant Features Using a Random Trees Model JF - International Journal of Environmental Research and Public Health, IJERPH N2 - Heart disease is one of the most common diseases in middle-aged citizens. Among the vast number of heart diseases, coronary artery disease (CAD) is considered as a common cardiovascular disease with a high death rate. The most popular tool for diagnosing CAD is the use of medical imaging, e.g., angiography. However, angiography is known for being costly and also associated with a number of side effects. Hence, the purpose of this study is to increase the accuracy of coronary heart disease diagnosis through selecting significant predictive features in order of their ranking. In this study, we propose an integrated method using machine learning. The machine learning methods of random trees (RTs), decision tree of C5.0, support vector machine (SVM), and decision tree of Chi-squared automatic interaction detection (CHAID) are used in this study. The proposed method shows promising results and the study confirms that the RTs model outperforms other models. KW - Maschinelles Lernen KW - Machine learning KW - Deep learning KW - coronary artery disease KW - heart disease diagnosis KW - health informatics KW - data science KW - big data KW - predictive model KW - ensemble model KW - random forest KW - industry 4.0 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200213-40819 UR - https://www.mdpi.com/1660-4601/17/3/731 VL - 2020 IS - Volume 17, Issue 3, 731 PB - MDPI ER - TY - JOUR A1 - Jilte, Ravindra A1 - Ahmadi, Mohammad Hossein A1 - Kumar, Ravinder A1 - Kalamkar, Vilas A1 - Mosavi, Amir T1 - Cooling Performance of a Novel Circulatory Flow Concentric Multi-Channel Heat Sink with Nanofluids JF - Nanomaterials N2 - Heat rejection from electronic devices such as processors necessitates a high heat removal rate. The present study focuses on liquid-cooled novel heat sink geometry made from four channels (width 4 mm and depth 3.5 mm) configured in a concentric shape with alternate flow passages (slot of 3 mm gap). In this study, the cooling performance of the heat sink was tested under simulated controlled conditions.The lower bottom surface of the heat sink was heated at a constant heat flux condition based on dissipated power of 50 W and 70 W. The computations were carried out for different volume fractions of nanoparticles, namely 0.5% to 5%, and water as base fluid at a flow rate of 30 to 180 mL/min. The results showed a higher rate of heat rejection from the nanofluid cooled heat sink compared with water. The enhancement in performance was analyzed with the help of a temperature difference of nanofluid outlet temperature and water outlet temperature under similar operating conditions. The enhancement was ~2% for 0.5% volume fraction nanofluids and ~17% for a 5% volume fraction. KW - Nanostrukturiertes Material KW - Kühlkörper KW - Nasskühlung KW - nanofluid KW - Nanomaterials KW - Machine learning KW - heat sink Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200401-41241 UR - https://www.mdpi.com/2079-4991/10/4/647 VL - 2020 IS - Volume 10, Issue 4, 647 PB - MDPI CY - Basel ER - TY - JOUR A1 - Faroughi, Maryam A1 - Karimimoshaver, Mehrdad A1 - Aram, Farshid A1 - Solgi, Ebrahim A1 - Mosavi, Amir A1 - Nabipour, Narjes A1 - Chau, Kwok-Wing T1 - Computational modeling of land surface temperature using remote sensing data to investigate the spatial arrangement of buildings and energy consumption relationship JF - Engineering Applications of Computational Fluid Mechanics N2 - The effect of urban form on energy consumption has been the subject of various studies around the world. Having examined the effect of buildings on energy consumption, these studies indicate that the physical form of a city has a notable impact on the amount of energy consumed in its spaces. The present study identified the variables that affected energy consumption in residential buildings and analyzed their effects on energy consumption in four neighborhoods in Tehran: Apadana, Bimeh, Ekbatan-phase I, and Ekbatan-phase II. After extracting the variables, their effects are estimated with statistical methods, and the results are compared with the land surface temperature (LST) remote sensing data derived from Landsat 8 satellite images taken in the winter of 2019. The results showed that physical variables, such as the size of buildings, population density, vegetation cover, texture concentration, and surface color, have the greatest impacts on energy usage. For the Apadana neighborhood, the factors with the most potent effect on energy consumption were found to be the size of buildings and the population density. However, for other neighborhoods, in addition to these two factors, a third factor was also recognized to have a significant effect on energy consumption. This third factor for the Bimeh, Ekbatan-I, and Ekbatan-II neighborhoods was the type of buildings, texture concentration, and orientation of buildings, respectively. KW - Fernerkung KW - Intelligente Stadt KW - Oberflächentemperatur KW - remote sensing KW - smart cities KW - Land surface temperature KW - energy consumption KW - residential buildings KW - urban morphology KW - urban sustainability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200110-40585 UR - https://www.tandfonline.com/doi/full/10.1080/19942060.2019.1707711 VL - 2020 IS - Volume 14, No. 1 SP - 254 EP - 270 PB - Taylor & Francis ER - TY - JOUR A1 - Mosavi, Amir A1 - Shamshirband, Shahaboddin A1 - Esmaeilbeiki, Fatemeh A1 - Zarehaghi, Davoud A1 - Neyshabouri, Mohammadreza A1 - Samadianfard, Saeed A1 - Ghorbani, Mohammad Ali A1 - Nabipour, Narjes A1 - Chau, Kwok-Wing T1 - Comparative analysis of hybrid models of firefly optimization algorithm with support vector machines and multilayer perceptron for predicting soil temperature at different depths JF - Engineering Applications of Computational Fluid Mechanics N2 - This research aims to model soil temperature (ST) using machine learning models of multilayer perceptron (MLP) algorithm and support vector machine (SVM) in hybrid form with the Firefly optimization algorithm, i.e. MLP-FFA and SVM-FFA. In the current study, measured ST and meteorological parameters of Tabriz and Ahar weather stations in a period of 2013–2015 are used for training and testing of the studied models with one and two days as a delay. To ascertain conclusive results for validation of the proposed hybrid models, the error metrics are benchmarked in an independent testing period. Moreover, Taylor diagrams utilized for that purpose. Obtained results showed that, in a case of one day delay, except in predicting ST at 5 cm below the soil surface (ST5cm) at Tabriz station, MLP-FFA produced superior results compared with MLP, SVM, and SVM-FFA models. However, for two days delay, MLP-FFA indicated increased accuracy in predicting ST5cm and ST 20cm of Tabriz station and ST10cm of Ahar station in comparison with SVM-FFA. Additionally, for all of the prescribed models, the performance of the MLP-FFA and SVM-FFA hybrid models in the testing phase was found to be meaningfully superior to the classical MLP and SVM models. KW - Bodentemperatur KW - Algorithmus KW - Maschinelles Lernen KW - Neuronales Netz KW - firefly optimization algorithm KW - soil temperature KW - artificial neural networks KW - hybrid machine learning KW - OA-Publikationsfonds2019 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200911-42347 UR - https://www.tandfonline.com/doi/full/10.1080/19942060.2020.1788644 VL - 2020 IS - Volume 14, Issue 1 SP - 939 EP - 953 ER - TY - JOUR A1 - Band, Shahab S. A1 - Janizadeh, Saeid A1 - Chandra Pal, Subodh A1 - Chowdhuri, Indrajit A1 - Siabi, Zhaleh A1 - Norouzi, Akbar A1 - Melesse, Assefa M. A1 - Shokri, Manouchehr A1 - Mosavi, Amir Hosein T1 - Comparative Analysis of Artificial Intelligence Models for Accurate Estimation of Groundwater Nitrate Concentration JF - Sensors N2 - Prediction of the groundwater nitrate concentration is of utmost importance for pollution control and water resource management. This research aims to model the spatial groundwater nitrate concentration in the Marvdasht watershed, Iran, based on several artificial intelligence methods of support vector machine (SVM), Cubist, random forest (RF), and Bayesian artificial neural network (Baysia-ANN) machine learning models. For this purpose, 11 independent variables affecting groundwater nitrate changes include elevation, slope, plan curvature, profile curvature, rainfall, piezometric depth, distance from the river, distance from residential, Sodium (Na), Potassium (K), and topographic wetness index (TWI) in the study area were prepared. Nitrate levels were also measured in 67 wells and used as a dependent variable for modeling. Data were divided into two categories of training (70%) and testing (30%) for modeling. The evaluation criteria coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and Nash–Sutcliffe efficiency (NSE) were used to evaluate the performance of the models used. The results of modeling the susceptibility of groundwater nitrate concentration showed that the RF (R2 = 0.89, RMSE = 4.24, NSE = 0.87) model is better than the other Cubist (R2 = 0.87, RMSE = 5.18, NSE = 0.81), SVM (R2 = 0.74, RMSE = 6.07, NSE = 0.74), Bayesian-ANN (R2 = 0.79, RMSE = 5.91, NSE = 0.75) models. The results of groundwater nitrate concentration zoning in the study area showed that the northern parts of the case study have the highest amount of nitrate, which is higher in these agricultural areas than in other areas. The most important cause of nitrate pollution in these areas is agriculture activities and the use of groundwater to irrigate these crops and the wells close to agricultural areas, which has led to the indiscriminate use of chemical fertilizers by irrigation or rainwater of these fertilizers is washed and penetrates groundwater and pollutes the aquifer. KW - Grundwasser KW - Nitratbelastung KW - Künstliche Intelligenz KW - ground water contamination KW - machine learning KW - big data KW - hydrological model KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210122-43364 UR - https://www.mdpi.com/1424-8220/20/20/5763 VL - 2020 IS - Volume 20, issue 20, article 5763 SP - 1 EP - 23 PB - MDPI CY - Basel ER - TY - JOUR A1 - Lashkar-Ara, Babak A1 - Kalantari, Niloofar A1 - Sheikh Khozani, Zohreh A1 - Mosavi, Amir T1 - Assessing Machine Learning versus a Mathematical Model to Estimate the Transverse Shear Stress Distribution in a Rectangular Channel JF - Mathematics N2 - One of the most important subjects of hydraulic engineering is the reliable estimation of the transverse distribution in the rectangular channel of bed and wall shear stresses. This study makes use of the Tsallis entropy, genetic programming (GP) and adaptive neuro-fuzzy inference system (ANFIS) methods to assess the shear stress distribution (SSD) in the rectangular channel. To evaluate the results of the Tsallis entropy, GP and ANFIS models, laboratory observations were used in which shear stress was measured using an optimized Preston tube. This is then used to measure the SSD in various aspect ratios in the rectangular channel. To investigate the shear stress percentage, 10 data series with a total of 112 different data for were used. The results of the sensitivity analysis show that the most influential parameter for the SSD in smooth rectangular channel is the dimensionless parameter B/H, Where the transverse coordinate is B, and the flow depth is H. With the parameters (b/B), (B/H) for the bed and (z/H), (B/H) for the wall as inputs, the modeling of the GP was better than the other one. Based on the analysis, it can be concluded that the use of GP and ANFIS algorithms is more effective in estimating shear stress in smooth rectangular channels than the Tsallis entropy-based equations. KW - Maschinelles Lernen KW - smooth rectangular channel KW - Tsallis entropy KW - genetic programming KW - artificial intelligence KW - machine learning KW - big data KW - computational hydraulics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210504-44197 UR - https://www.mdpi.com/2227-7390/9/6/596 VL - 2021 IS - Volume 9, Issue 6, Article 596 PB - MDPI CY - Basel ER - TY - INPR A1 - Rezakazemi, Mashallah A1 - Mosavi, Amir A1 - Shirazian, Saeed T1 - ANFIS pattern for molecular membranes separation optimization N2 - In this work, molecular separation of aqueous-organic was simulated by using combined soft computing-mechanistic approaches. The considered separation system was a microporous membrane contactor for separation of benzoic acid from water by contacting with an organic phase containing extractor molecules. Indeed, extractive separation is carried out using membrane technology where complex of solute-organic is formed at the interface. The main focus was to develop a simulation methodology for prediction of concentration distribution of solute (benzoic acid) in the feed side of the membrane system, as the removal efficiency of the system is determined by concentration distribution of the solute in the feed channel. The pattern of Adaptive Neuro-Fuzzy Inference System (ANFIS) was optimized by finding the optimum membership function, learning percentage, and a number of rules. The ANFIS was trained using the extracted data from the CFD simulation of the membrane system. The comparisons between the predicted concentration distribution by ANFIS and CFD data revealed that the optimized ANFIS pattern can be used as a predictive tool for simulation of the process. The R2 of higher than 0.99 was obtained for the optimized ANFIS model. The main privilege of the developed methodology is its very low computational time for simulation of the system and can be used as a rigorous simulation tool for understanding and design of membrane-based systems. Highlights are, Molecular separation using microporous membranes. Developing hybrid model based on ANFIS-CFD for the separation process, Optimization of ANFIS structure for prediction of separation process KW - Fluid KW - Simulation KW - Molecular Liquids KW - optimization KW - machine learning KW - Membrane contactors KW - CFD Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181122-38212 N1 - This is the pre-peer reviewed version of the following article: https://www.sciencedirect.com/science/article/pii/S0167732218345008, which has been published in final form at https://doi.org/10.1016/j.molliq.2018.11.017. VL - 2018 SP - 1 EP - 20 ER - TY - JOUR A1 - Mosavi, Amir A1 - Najafi, Bahman A1 - Faizollahzadeh Ardabili, Sina A1 - Shamshirband, Shahaboddin A1 - Rabczuk, Timon T1 - An Intelligent Artificial Neural Network-Response Surface Methodology Method for Accessing the Optimum Biodiesel and Diesel Fuel Blending Conditions in a Diesel Engine from the Viewpoint of Exergy and Energy Analysis JF - Energies N2 - Biodiesel, as the main alternative fuel to diesel fuel which is produced from renewable and available resources, improves the engine emissions during combustion in diesel engines. In this study, the biodiesel is produced initially from waste cooking oil (WCO). The fuel samples are applied in a diesel engine and the engine performance has been considered from the viewpoint of exergy and energy approaches. Engine tests are performed at a constant 1500 rpm speed with various loads and fuel samples. The obtained experimental data are also applied to develop an artificial neural network (ANN) model. Response surface methodology (RSM) is employed to optimize the exergy and energy efficiencies. Based on the results of the energy analysis, optimal engine performance is obtained at 80% of full load in presence of B10 and B20 fuels. However, based on the exergy analysis results, optimal engine performance is obtained at 80% of full load in presence of B90 and B100 fuels. The optimum values of exergy and energy efficiencies are in the range of 25–30% of full load, which is the same as the calculated range obtained from mathematical modeling. KW - Biodiesel KW - ANN modeling KW - biodiesel KW - Artificial Intelligence KW - diesel engines KW - energy, exergy KW - mathematical modeling KW - OA-Publikationsfonds2018 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20180507-37467 UR - http://www.mdpi.com/1996-1073/11/4/860 VL - 2018 IS - 11, 4 PB - MDPI CY - Basel ER - TY - JOUR A1 - Homaei, Mohammad Hossein A1 - Soleimani, Faezeh A1 - Shamshirband, Shahaboddin A1 - Mosavi, Amir A1 - Nabipour, Narjes A1 - Varkonyi-Koczy, Annamaria R. T1 - An Enhanced Distributed Congestion Control Method for Classical 6LowPAN Protocols Using Fuzzy Decision System JF - IEEE Access N2 - The classical Internet of things routing and wireless sensor networks can provide more precise monitoring of the covered area due to the higher number of utilized nodes. Because of the limitations in shared transfer media, many nodes in the network are prone to the collision in simultaneous transmissions. Medium access control protocols are usually more practical in networks with low traffic, which are not subjected to external noise from adjacent frequencies. There are preventive, detection and control solutions to congestion management in the network which are all the focus of this study. In the congestion prevention phase, the proposed method chooses the next step of the path using the Fuzzy decision-making system to distribute network traffic via optimal paths. In the congestion detection phase, a dynamic approach to queue management was designed to detect congestion in the least amount of time and prevent the collision. In the congestion control phase, the back-pressure method was used based on the quality of the queue to decrease the probability of linking in the pathway from the pre-congested node. The main goals of this study are to balance energy consumption in network nodes, reducing the rate of lost packets and increasing quality of service in routing. Simulation results proved the proposed Congestion Control Fuzzy Decision Making (CCFDM) method was more capable in improving routing parameters as compared to recent algorithms. KW - Internet der dinge KW - IOT KW - Internet of things KW - wireless sensor network KW - congestion control KW - fuzzy decision making KW - back-pressure Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200213-40805 UR - https://ieeexplore.ieee.org/document/8967114 IS - volume 8 SP - 20628 EP - 20645 PB - IEEE ER -