TY - JOUR A1 - Mousavi, Seyed Nasrollah A1 - Steinke Júnior, Renato A1 - Teixeira, Eder Daniel A1 - Bocchiola, Daniele A1 - Nabipour, Narjes A1 - Mosavi, Amir A1 - Shamshirband, Shahaboddin T1 - Predictive Modeling the Free Hydraulic Jumps Pressure through Advanced Statistical Methods JF - Mathematics N2 - Pressure fluctuations beneath hydraulic jumps potentially endanger the stability of stilling basins. This paper deals with the mathematical modeling of the results of laboratory-scale experiments to estimate the extreme pressures. Experiments were carried out on a smooth stilling basin underneath free hydraulic jumps downstream of an Ogee spillway. From the probability distribution of measured instantaneous pressures, pressures with different probabilities could be determined. It was verified that maximum pressure fluctuations, and the negative pressures, are located at the positions near the spillway toe. Also, minimum pressure fluctuations are located at the downstream of hydraulic jumps. It was possible to assess the cumulative curves of pressure data related to the characteristic points along the basin, and different Froude numbers. To benchmark the results, the dimensionless forms of statistical parameters include mean pressures (P*m), the standard deviations of pressure fluctuations (σ*X), pressures with different non-exceedance probabilities (P*k%), and the statistical coefficient of the probability distribution (Nk%) were assessed. It was found that an existing method can be used to interpret the present data, and pressure distribution in similar conditions, by using a new second-order fractional relationships for σ*X, and Nk%. The values of the Nk% coefficient indicated a single mean value for each probability. KW - Maschinelles Lernen KW - Machine learning KW - mathematical modeling KW - extreme pressure KW - hydraulic jump KW - stilling basin KW - standard deviation of pressure fluctuations KW - statistical coeffcient of the probability distribution Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200402-41140 UR - https://www.mdpi.com/2227-7390/8/3/323 VL - 2020 IS - Volume 8, Issue 3, 323 PB - MDPI CY - Basel ER - TY - JOUR A1 - Faroughi, Maryam A1 - Karimimoshaver, Mehrdad A1 - Aram, Farshid A1 - Solgi, Ebrahim A1 - Mosavi, Amir A1 - Nabipour, Narjes A1 - Chau, Kwok-Wing T1 - Computational modeling of land surface temperature using remote sensing data to investigate the spatial arrangement of buildings and energy consumption relationship JF - Engineering Applications of Computational Fluid Mechanics N2 - The effect of urban form on energy consumption has been the subject of various studies around the world. Having examined the effect of buildings on energy consumption, these studies indicate that the physical form of a city has a notable impact on the amount of energy consumed in its spaces. The present study identified the variables that affected energy consumption in residential buildings and analyzed their effects on energy consumption in four neighborhoods in Tehran: Apadana, Bimeh, Ekbatan-phase I, and Ekbatan-phase II. After extracting the variables, their effects are estimated with statistical methods, and the results are compared with the land surface temperature (LST) remote sensing data derived from Landsat 8 satellite images taken in the winter of 2019. The results showed that physical variables, such as the size of buildings, population density, vegetation cover, texture concentration, and surface color, have the greatest impacts on energy usage. For the Apadana neighborhood, the factors with the most potent effect on energy consumption were found to be the size of buildings and the population density. However, for other neighborhoods, in addition to these two factors, a third factor was also recognized to have a significant effect on energy consumption. This third factor for the Bimeh, Ekbatan-I, and Ekbatan-II neighborhoods was the type of buildings, texture concentration, and orientation of buildings, respectively. KW - Fernerkung KW - Intelligente Stadt KW - Oberflächentemperatur KW - remote sensing KW - smart cities KW - Land surface temperature KW - energy consumption KW - residential buildings KW - urban morphology KW - urban sustainability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200110-40585 UR - https://www.tandfonline.com/doi/full/10.1080/19942060.2019.1707711 VL - 2020 IS - Volume 14, No. 1 SP - 254 EP - 270 PB - Taylor & Francis ER - TY - JOUR A1 - Nabipour, Narjes A1 - Mosavi, Amir A1 - Baghban, Alireza A1 - Shamshirband, Shahaboddin A1 - Felde, Imre T1 - Extreme Learning Machine-Based Model for Solubility Estimation of Hydrocarbon Gases in Electrolyte Solutions JF - Processes N2 - Calculating hydrocarbon components solubility of natural gases is known as one of the important issues for operational works in petroleum and chemical engineering. In this work, a novel solubility estimation tool has been proposed for hydrocarbon gases—including methane, ethane, propane, and butane—in aqueous electrolyte solutions based on extreme learning machine (ELM) algorithm. Comparing the ELM outputs with a comprehensive real databank which has 1175 solubility points yielded R-squared values of 0.985 and 0.987 for training and testing phases respectively. Furthermore, the visual comparison of estimated and actual hydrocarbon solubility led to confirm the ability of proposed solubility model. Additionally, sensitivity analysis has been employed on the input variables of model to identify their impacts on hydrocarbon solubility. Such a comprehensive and reliable study can help engineers and scientists to successfully determine the important thermodynamic properties, which are key factors in optimizing and designing different industrial units such as refineries and petrochemical plants. KW - Maschinelles Lernen KW - Machine learning KW - Deep learning Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200113-40624 UR - https://www.mdpi.com/2227-9717/8/1/92 VL - 2020 IS - Volume 8, Issue 1, 92 PB - MDPI ER -