TY - JOUR A1 - Band, Shahab S. A1 - Janizadeh, Saeid A1 - Chandra Pal, Subodh A1 - Saha, Asish A1 - Chakrabortty, Rabbin A1 - Shokri, Manouchehr A1 - Mosavi, Amir Hosein T1 - Novel Ensemble Approach of Deep Learning Neural Network (DLNN) Model and Particle Swarm Optimization (PSO) Algorithm for Prediction of Gully Erosion Susceptibility JF - Sensors N2 - This study aims to evaluate a new approach in modeling gully erosion susceptibility (GES) based on a deep learning neural network (DLNN) model and an ensemble particle swarm optimization (PSO) algorithm with DLNN (PSO-DLNN), comparing these approaches with common artificial neural network (ANN) and support vector machine (SVM) models in Shirahan watershed, Iran. For this purpose, 13 independent variables affecting GES in the study area, namely, altitude, slope, aspect, plan curvature, profile curvature, drainage density, distance from a river, land use, soil, lithology, rainfall, stream power index (SPI), and topographic wetness index (TWI), were prepared. A total of 132 gully erosion locations were identified during field visits. To implement the proposed model, the dataset was divided into the two categories of training (70%) and testing (30%). The results indicate that the area under the curve (AUC) value from receiver operating characteristic (ROC) considering the testing datasets of PSO-DLNN is 0.89, which indicates superb accuracy. The rest of the models are associated with optimal accuracy and have similar results to the PSO-DLNN model; the AUC values from ROC of DLNN, SVM, and ANN for the testing datasets are 0.87, 0.85, and 0.84, respectively. The efficiency of the proposed model in terms of prediction of GES was increased. Therefore, it can be concluded that the DLNN model and its ensemble with the PSO algorithm can be used as a novel and practical method to predict gully erosion susceptibility, which can help planners and managers to manage and reduce the risk of this phenomenon. KW - Geoinformatik KW - Maschinelles Lernen KW - gully erosion susceptibility KW - deep learning neural network KW - partical swarm optimization KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210122-43341 UR - https://www.mdpi.com/1424-8220/20/19/5609 VL - 2020 IS - Volume 20, issue 19, article 5609 SP - 1 EP - 27 PB - MDPI CY - Basel ER - TY - JOUR A1 - Saadatfar, Hamid A1 - Khosravi, Samiyeh A1 - Hassannataj Joloudari, Javad A1 - Mosavi, Amir A1 - Shamshirband, Shahaboddin T1 - A New K-Nearest Neighbors Classifier for Big Data Based on Efficient Data Pruning JF - Mathematics N2 - The K-nearest neighbors (KNN) machine learning algorithm is a well-known non-parametric classification method. However, like other traditional data mining methods, applying it on big data comes with computational challenges. Indeed, KNN determines the class of a new sample based on the class of its nearest neighbors; however, identifying the neighbors in a large amount of data imposes a large computational cost so that it is no longer applicable by a single computing machine. One of the proposed techniques to make classification methods applicable on large datasets is pruning. LC-KNN is an improved KNN method which first clusters the data into some smaller partitions using the K-means clustering method; and then applies the KNN for each new sample on the partition which its center is the nearest one. However, because the clusters have different shapes and densities, selection of the appropriate cluster is a challenge. In this paper, an approach has been proposed to improve the pruning phase of the LC-KNN method by taking into account these factors. The proposed approach helps to choose a more appropriate cluster of data for looking for the neighbors, thus, increasing the classification accuracy. The performance of the proposed approach is evaluated on different real datasets. The experimental results show the effectiveness of the proposed approach and its higher classification accuracy and lower time cost in comparison to other recent relevant methods. KW - Maschinelles Lernen KW - Machine learning KW - K-nearest neighbors KW - KNN KW - classifier KW - big data KW - clustering KW - cluster shape KW - cluster density KW - classification KW - reinforcement learning KW - data science KW - computation KW - artificial intelligence KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200225-40996 UR - https://www.mdpi.com/2227-7390/8/2/286 VL - 2020 IS - volume 8, issue 2, article 286 PB - MDPI ER - TY - JOUR A1 - Ahmadi, Mohammad Hossein A1 - Baghban, Alireza A1 - Sadeghzadeh, Milad A1 - Zamen, Mohammad A1 - Mosavi, Amir A1 - Shamshirband, Shahaboddin A1 - Kumar, Ravinder A1 - Mohammadi-Khanaposhtani, Mohammad T1 - Evaluation of electrical efficiency of photovoltaic thermal solar collector JF - Engineering Applications of Computational Fluid Mechanics N2 - In this study, machine learning methods of artificial neural networks (ANNs), least squares support vector machines (LSSVM), and neuro-fuzzy are used for advancing prediction models for thermal performance of a photovoltaic-thermal solar collector (PV/T). In the proposed models, the inlet temperature, flow rate, heat, solar radiation, and the sun heat have been considered as the input variables. Data set has been extracted through experimental measurements from a novel solar collector system. Different analyses are performed to examine the credibility of the introduced models and evaluate their performances. The proposed LSSVM model outperformed the ANFIS and ANNs models. LSSVM model is reported suitable when the laboratory measurements are costly and time-consuming, or achieving such values requires sophisticated interpretations. KW - Fotovoltaik KW - Erneuerbare Energien KW - Solar KW - Deep learning KW - Machine learning KW - Renewable energy KW - neural networks (NNs) KW - adaptive neuro-fuzzy inference system (ANFIS) KW - least square support vector machine (LSSVM) KW - photovoltaic-thermal (PV/T) KW - hybrid machine learning model KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200304-41049 UR - https://www.tandfonline.com/doi/full/10.1080/19942060.2020.1734094 VL - 2020 IS - volume 14, issue 1 SP - 545 EP - 565 PB - Taylor & Francis ER - TY - JOUR A1 - Shamshirband, Shahaboddin A1 - Babanezhad, Meisam A1 - Mosavi, Amir A1 - Nabipour, Narjes A1 - Hajnal, Eva A1 - Nadai, Laszlo A1 - Chau, Kwok-Wing T1 - Prediction of flow characteristics in the bubble column reactor by the artificial pheromone-based communication of biological ants JF - Engineering Applications of Computational Fluid Mechanics N2 - A novel combination of the ant colony optimization algorithm (ACO)and computational fluid dynamics (CFD) data is proposed for modeling the multiphase chemical reactors. The proposed intelligent model presents a probabilistic computational strategy for predicting various levels of three-dimensional bubble column reactor (BCR) flow. The results prove an enhanced communication between ant colony prediction and CFD data in different sections of the BCR. KW - Maschinelles Lernen KW - Machine learning KW - Bubble column reactor KW - ant colony optimization algorithm (ACO) KW - flow pattern KW - computational fluid dynamics (CFD) KW - big data KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200227-41013 UR - https://www.tandfonline.com/doi/full/10.1080/19942060.2020.1715842 VL - 2020 IS - volume 14, issue 1 SP - 367 EP - 378 PB - Taylor & Francis ER - TY - JOUR A1 - Amirinasab, Mehdi A1 - Shamshirband, Shahaboddin A1 - Chronopoulos, Anthony Theodore A1 - Mosavi, Amir A1 - Nabipour, Narjes T1 - Energy‐Efficient Method for Wireless Sensor Networks Low‐Power Radio Operation in Internet of Things JF - electronics N2 - The radio operation in wireless sensor networks (WSN) in Internet of Things (IoT)applications is the most common source for power consumption. Consequently, recognizing and controlling the factors affecting radio operation can be valuable for managing the node power consumption. Among essential factors affecting radio operation, the time spent for checking the radio is of utmost importance for monitoring power consumption. It can lead to false WakeUp or idle listening in radio duty cycles and ContikiMAC. ContikiMAC is a low‐power radio duty‐cycle protocol in Contiki OS used in WakeUp mode, as a clear channel assessment (CCA) for checking radio status periodically. This paper presents a detailed analysis of radio WakeUp time factors of ContikiMAC. Furthermore, we propose a lightweight CCA (LW‐CCA) as an extension to ContikiMAC to reduce the Radio Duty‐Cycles in false WakeUps and idle listening though using dynamic received signal strength indicator (RSSI) status check time. The simulation results in the Cooja simulator show that LW‐CCA reduces about 8% energy consumption in nodes while maintaining up to 99% of the packet delivery rate (PDR). KW - Internet der Dinge KW - Internet of things KW - wireless sensor networks KW - ContikiMAC KW - energy efficiency KW - duty-cycles KW - clear channel assessments KW - fog computing KW - smart sensors KW - signal processing KW - received signal strength indicator KW - OA-Publikationsfonds2020 KW - RSSI Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200213-40954 UR - https://www.mdpi.com/2079-9292/9/2/320 VL - 2020 IS - volume 9, issue 2, 320 PB - MDPI ER - TY - JOUR A1 - Band, Shahab S. A1 - Janizadeh, Saeid A1 - Chandra Pal, Subodh A1 - Chowdhuri, Indrajit A1 - Siabi, Zhaleh A1 - Norouzi, Akbar A1 - Melesse, Assefa M. A1 - Shokri, Manouchehr A1 - Mosavi, Amir Hosein T1 - Comparative Analysis of Artificial Intelligence Models for Accurate Estimation of Groundwater Nitrate Concentration JF - Sensors N2 - Prediction of the groundwater nitrate concentration is of utmost importance for pollution control and water resource management. This research aims to model the spatial groundwater nitrate concentration in the Marvdasht watershed, Iran, based on several artificial intelligence methods of support vector machine (SVM), Cubist, random forest (RF), and Bayesian artificial neural network (Baysia-ANN) machine learning models. For this purpose, 11 independent variables affecting groundwater nitrate changes include elevation, slope, plan curvature, profile curvature, rainfall, piezometric depth, distance from the river, distance from residential, Sodium (Na), Potassium (K), and topographic wetness index (TWI) in the study area were prepared. Nitrate levels were also measured in 67 wells and used as a dependent variable for modeling. Data were divided into two categories of training (70%) and testing (30%) for modeling. The evaluation criteria coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and Nash–Sutcliffe efficiency (NSE) were used to evaluate the performance of the models used. The results of modeling the susceptibility of groundwater nitrate concentration showed that the RF (R2 = 0.89, RMSE = 4.24, NSE = 0.87) model is better than the other Cubist (R2 = 0.87, RMSE = 5.18, NSE = 0.81), SVM (R2 = 0.74, RMSE = 6.07, NSE = 0.74), Bayesian-ANN (R2 = 0.79, RMSE = 5.91, NSE = 0.75) models. The results of groundwater nitrate concentration zoning in the study area showed that the northern parts of the case study have the highest amount of nitrate, which is higher in these agricultural areas than in other areas. The most important cause of nitrate pollution in these areas is agriculture activities and the use of groundwater to irrigate these crops and the wells close to agricultural areas, which has led to the indiscriminate use of chemical fertilizers by irrigation or rainwater of these fertilizers is washed and penetrates groundwater and pollutes the aquifer. KW - Grundwasser KW - Nitratbelastung KW - Künstliche Intelligenz KW - ground water contamination KW - machine learning KW - big data KW - hydrological model KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210122-43364 UR - https://www.mdpi.com/1424-8220/20/20/5763 VL - 2020 IS - Volume 20, issue 20, article 5763 SP - 1 EP - 23 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mosavi, Amir Hosein A1 - Shokri, Manouchehr A1 - Mansor, Zulkefli A1 - Qasem, Sultan Noman A1 - Band, Shahab S. A1 - Mohammadzadeh, Ardashir T1 - Machine Learning for Modeling the Singular Multi-Pantograph Equations JF - Entropy N2 - In this study, a new approach to basis of intelligent systems and machine learning algorithms is introduced for solving singular multi-pantograph differential equations (SMDEs). For the first time, a type-2 fuzzy logic based approach is formulated to find an approximated solution. The rules of the suggested type-2 fuzzy logic system (T2-FLS) are optimized by the square root cubature Kalman filter (SCKF) such that the proposed fineness function to be minimized. Furthermore, the stability and boundedness of the estimation error is proved by novel approach on basis of Lyapunov theorem. The accuracy and robustness of the suggested algorithm is verified by several statistical examinations. It is shown that the suggested method results in an accurate solution with rapid convergence and a lower computational cost. KW - Fuzzy-Regelung KW - square root cubature calman filter KW - statistical analysis KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210122-43436 UR - https://www.mdpi.com/1099-4300/22/9/1041 VL - 2020 IS - volume 22, issue 9, article 1041 SP - 1 EP - 18 PB - MDPI CY - Basel ER - TY - JOUR A1 - Band, Shahab S. A1 - Janizadeh, Saeid A1 - Saha, Sunil A1 - Mukherjee, Kaustuv A1 - Khosrobeigi Bozchaloei, Saeid A1 - Cerdà, Artemi A1 - Shokri, Manouchehr A1 - Mosavi, Amir Hosein T1 - Evaluating the Efficiency of Different Regression, Decision Tree, and Bayesian Machine Learning Algorithms in Spatial Piping Erosion Susceptibility Using ALOS/PALSAR Data JF - Land N2 - Piping erosion is one form of water erosion that leads to significant changes in the landscape and environmental degradation. In the present study, we evaluated piping erosion modeling in the Zarandieh watershed of Markazi province in Iran based on random forest (RF), support vector machine (SVM), and Bayesian generalized linear models (Bayesian GLM) machine learning algorithms. For this goal, due to the importance of various geo-environmental and soil properties in the evolution and creation of piping erosion, 18 variables were considered for modeling the piping erosion susceptibility in the Zarandieh watershed. A total of 152 points of piping erosion were recognized in the study area that were divided into training (70%) and validation (30%) for modeling. The area under curve (AUC) was used to assess the effeciency of the RF, SVM, and Bayesian GLM. Piping erosion susceptibility results indicated that all three RF, SVM, and Bayesian GLM models had high efficiency in the testing step, such as the AUC shown with values of 0.9 for RF, 0.88 for SVM, and 0.87 for Bayesian GLM. Altitude, pH, and bulk density were the variables that had the greatest influence on the piping erosion susceptibility in the Zarandieh watershed. This result indicates that geo-environmental and soil chemical variables are accountable for the expansion of piping erosion in the Zarandieh watershed. KW - Maschinelles Lernen KW - Bayes-Verfahren KW - Naturkatastrophe KW - random forest KW - support vector machine KW - geoinformatics KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210122-43424 UR - https://www.mdpi.com/2073-445X/9/10/346 VL - 2020 IS - volume 9, issue 10, article 346 SP - 1 EP - 22 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mosavi, Amir Hosein A1 - Qasem, Sultan Noman A1 - Shokri, Manouchehr A1 - Band, Shahab S. A1 - Mohammadzadeh, Ardashir T1 - Fractional-Order Fuzzy Control Approach for Photovoltaic/Battery Systems under Unknown Dynamics, Variable Irradiation and Temperature JF - Electronics N2 - For this paper, the problem of energy/voltage management in photovoltaic (PV)/battery systems was studied, and a new fractional-order control system on basis of type-3 (T3) fuzzy logic systems (FLSs) was developed. New fractional-order learning rules are derived for tuning of T3-FLSs such that the stability is ensured. In addition, using fractional-order calculus, the robustness was studied versus dynamic uncertainties, perturbation of irradiation, and temperature and abruptly faults in output loads, and, subsequently, new compensators were proposed. In several examinations under difficult operation conditions, such as random temperature, variable irradiation, and abrupt changes in output load, the capability of the schemed controller was verified. In addition, in comparison with other methods, such as proportional-derivative-integral (PID), sliding mode controller (SMC), passivity-based control systems (PBC), and linear quadratic regulator (LQR), the superiority of the suggested method was demonstrated. KW - Fuzzy-Logik KW - Fotovoltaik KW - type-3 fuzzy systems KW - fractional-order control KW - battery KW - photovoltaic KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210122-43381 UR - https://www.mdpi.com/2079-9292/9/9/1455 VL - 2020 IS - Volume 9, issue 9, article 1455 SP - 1 EP - 19 PB - MDPI CY - Basel ER -