TY - CHAP A1 - Häfner, Stefan A1 - Eckardt, Stefan A1 - Könke, Carsten T1 - A geometrical inclusion-matrix model for the finite element analysis of concrete at multiple scales N2 - This paper introduces a method to generate adequate inclusion-matrix geometries of concrete in two and three dimensions, which are independent of any specific numerical discretization. The article starts with an analysis on shapes of natural aggregates and discusses corresponding mathematical realizations. As a first prototype a two-dimensional generation of a mesoscale model is introduced. Particle size distribution functions are analysed and prepared for simulating an adequate three-dimensional representation of the aggregates within a concrete structure. A sample geometry of a three-dimensional test cube is generated and the finite element analysis of its heterogeneous geometry by a uniform mesh is presented. Concluding, aspects of a multiscale analysis are discussed and possible enhancements are proposed. KW - Beton KW - Dreidimensionales Modell KW - Finite-Elemente-Methode Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-3018 ER - TY - JOUR A1 - Nguyen-Tuan, Long A1 - Könke, Carsten A1 - Bettzieche, Volker A1 - Lahmer, Tom T1 - Numerical modeling and validation for 3D coupled-nonlinear thermo-hydro-mechanical problems in masonry dams JF - Computers & Structures N2 - Numerical modeling and validation for 3D coupled-nonlinear thermo-hydro-mechanical problems in masonry dams KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2017 SP - 143 EP - 154 ER - TY - JOUR A1 - Luther, Torsten A1 - Könke, Carsten T1 - Coupled cohesive zone representations from 3D quasicontinuum simulation on aluminum grain boundaries JF - International Journal for Multiscale Computational Engineering N2 - Coupled cohesive zone representations from 3D quasicontinuum simulation on aluminum grain boundaries KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2010 ER - TY - JOUR A1 - Häfner, Stefan A1 - Eckardt, Stefan A1 - Luther, Torsten A1 - Könke, Carsten T1 - Mesoscale modeling of concrete: Geometry and numerics JF - Computers and Structures N2 - Mesoscale modeling of concrete: Geometry and numerics KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2006 SP - 450 EP - 461 ER - TY - JOUR A1 - Lahmer, Tom A1 - Könke, Carsten A1 - Bettzieche, Volker T1 - Optimale Positionierung von Messeinrichtungen an Staumauern zur Bauwerksüberwachung JF - WASSERWIRTSCHAFT N2 - Optimale Positionierung von Messeinrichtungen an Staumauern zur Bauwerksüberwachung KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2010 SP - 16 EP - 16 ER - TY - JOUR A1 - Lahmer, Tom A1 - Könke, Carsten A1 - Bettzieche, Volker T1 - Optimal positioning of sensors for the monitoring of water dams JF - WASSERWIRTSCHAFT N2 - Optimal positioning of sensors for the monitoring of water dams KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2010 SP - 16 EP - 19 ER - TY - JOUR A1 - Schrader, Kai A1 - Könke, Carsten T1 - Distributed computing for the nonlinear analysis of multiphase composites JF - Advances in Engineering Software N2 - Distributed computing for the nonlinear analysis of multiphase composites KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 SP - 20 EP - 32 ER - TY - CHAP A1 - Theiler, Michael A1 - Könke, Carsten ED - Maia, Nuno T1 - Damping in Bolted Joints T2 - Proceedings of International Conference on Structural Engineering Dynamics (ICEDyn) 2013 N2 - With the help of modern CAE-based simulation processes, it is possible to predict the dynamic behavior of fatigue strength problems in order to improve products of many industries, e.g. the building, the machine construction or the automotive industry. Amongst others, it can be used to improve the acoustic design of automobiles in an early development stage. Nowadays, the acoustics of automobiles plays a crucial role in the process of vehicle development. Because of the advanced demand of comfort and due to statutory rules the manufacturers are faced with the challenge of optimizing their car’s sound emissions. The optimization includes not only the reduction of noises. Lately with the trend to hybrid and electric cars, it has been shown that vehicles can become too quiet. Thus, the prediction of structural and acoustic properties based on FE-simulations is becoming increasingly important before any experimental prototype is examined. With the state of the art, qualitative comparisons between different implementations are possible. However, an accurate and reliable quantitative prediction is still a challenge. One aspect in the context of increasing the prediction quality of acoustic (or general oscillating) problems - especially in power-trains of automobiles - is the more accurate implementation of damping in joint structures. While material damping occurs globally and homogenous in a structural system, the damping due to joints is a very local problem, since energy is especially dissipated in the vicinity of joints. This paper focusses on experimental and numerical studies performed on a single (extracted) screw connection. Starting with experimental studies that are used to identify the underlying physical model of the energy loss, the locally influencing parameters (e.g. the damping factor) should be identified. In contrast to similar research projects, the approach tends to a more local consideration within the joint interface. Tangential stiffness and energy loss within the interface are spatially distributed and interactions between the influencing parameters are regarded. As a result, the damping matrix is no longer proportional to mass or stiffness matrix, since it is composed of the global material damping and the local joint damping. With this new approach, the prediction quality can be increased, since the local distribution of the physical parameters within the joint interface corresponds much closer to the reality. KW - Damping Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130701-19709 SN - 978-989-96276-4-2 ER - TY - JOUR A1 - Lahmer, Tom A1 - Nguyen-Tuan, Long A1 - Könke, Carsten A1 - Bettzieche, Volker T1 - Thermo-hydro-mechanische 3-D-Simulation von Staumauern‐Modellierung und Validierung JF - WASSERWIRTSCHAFT N2 - Thermo-hydro-mechanische 3-D-Simulation von Staumauern‐Modellierung und Validierung KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 SP - 27 EP - 30 ER - TY - JOUR A1 - Eckardt, Stefan A1 - Könke, Carsten T1 - Adaptive damage simulation of concrete using heterogeneous multiscale models JF - Journal of Algorithms & Computational Technology N2 - Adaptive damage simulation of concrete using heterogeneous multiscale models KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2008 SP - 275 EP - 297 ER -