TY - RPRT A1 - Amano, Toshiyuki A1 - Bimber, Oliver A1 - Grundhöfer, Anselm T1 - Appearance Enhancement for Visually Impaired with Projector Camera Feedback N2 - Visually impaired is a common problem for human life in the world wide. The projector-based AR technique has ability to change appearance of real object, and it can help to improve visibility for visually impaired. We propose a new framework for the appearance enhancement with the projector camera system that employed model predictive controller. This framework enables arbitrary image processing such as photo-retouch software in the real world and it helps to improve visibility for visually impaired. In this article, we show the appearance enhancement result of Peli's method and Wolffshon's method for the low vision, Jefferson's method for color vision deficiencies. Through experiment results, the potential of our method to enhance the appearance for visually impaired was confirmed as same as appearance enhancement for the digital image and television viewing. KW - Maschinelles Sehen KW - Projector Camera System KW - Model Predictive Control KW - Visually Impaired Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20100106-14974 ER - TY - RPRT A1 - Grundhöfer, Anselm A1 - Bimber, Oliver T1 - Dynamic Bluescreens N2 - Blue screens and chroma keying technology are essential for digital video composition. Professional studios apply tracking technology to record the camera path for perspective augmentations of the original video footage. Although this technology is well established, it does not offer a great deal of flexibility. For shootings at non-studio sets, physical blue screens might have to be installed, or parts have to be recorded in a studio separately. We present a simple and flexible way of projecting corrected keying colors onto arbitrary diffuse surfaces using synchronized projectors and radiometric compensation. Thereby, the reflectance of the underlying real surface is neutralized. A temporal multiplexing between projection and flash illumination allows capturing the fully lit scene, while still being able to key the foreground objects. In addition, we embed spatial codes into the projected key image to enable the tracking of the camera. Furthermore, the reconstruction of the scene geometry is implicitly supported. KW - Association for Computing Machinery / Special Interest Group on Graphics KW - CGI KW - Maschinelles Sehen KW - Farbstanzen KW - Erweiterte Realität KW - Projektion KW - Chroma Keying KW - Bildmischung KW - Augmented Reality KW - Projection KW - Chromakeying KW - Compositing Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20080226-13016 ER - TY - JOUR A1 - Grundhöfer, Anselm A1 - Seeger, Manja A1 - Häntsch, Ferry A1 - Bimber, Oliver T1 - Coded Projection and Illumination for Television Studios N2 - We propose the application of temporally and spatially coded projection and illumination in modern television studios. In our vision, this supports ad-hoc re-illumination, automatic keying, unconstrained presentation of moderation information, camera-tracking, and scene acquisition. In this paper we show how a new adaptive imperceptible pattern projection that considers parameters of human visual perception, linked with real-time difference keying enables an in-shot optical tracking using a novel dynamic multi-resolution marker technique KW - Association for Computing Machinery / Special Interest Group on Graphics KW - CGI KW - Maschinelles Sehen KW - Virtuelle Studios KW - Erweiterte Realität KW - Kamera Tracking KW - Projektion KW - Virtual Studios KW - Augmented Reality KW - Camera Tracking KW - Projection Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8005 ER - TY - JOUR A1 - Bimber, Oliver A1 - Grundhöfer, Anselm A1 - Zollmann, Stefanie A1 - Kolster, Daniel T1 - Digital Illumination for Augmented Studios N2 - Virtual studio technology plays an important role for modern television productions. Blue-screen matting is a common technique for integrating real actors or moderators into computer generated sceneries. Augmented reality offers the possibility to mix real and virtual in a more general context. This article proposes a new technological approach for combining real studio content with computergenerated information. Digital light projection allows a controlled spatial, temporal, chrominance and luminance modulation of illumination – opening new possibilities for TV studios. KW - Studiotechnik KW - Erweiterte Realität KW - Fernsehproduktion KW - Projektion KW - Augmented studio KW - Augmented reality KW - digital light projection Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8576 ER - TY - INPR A1 - Grundhöfer, Anselm A1 - Bimber, Oliver T1 - Real-Time Adaptive Radiometric Compensation N2 - Recent radiometric compensation techniques make it possible to project images onto colored and textured surfaces. This is realized with projector-camera systems by scanning the projection surface on a per-pixel basis. With the captured information, a compensation image is calculated that neutralizes geometric distortions and color blending caused by the underlying surface. As a result, the brightness and the contrast of the input image is reduced compared to a conventional projection onto a white canvas. If the input image is not manipulated in its intensities, the compensation image can contain values that are outside the dynamic range of the projector. They will lead to clipping errors and to visible artifacts on the surface. In this article, we present a novel algorithm that dynamically adjusts the content of the input images before radiometric compensation is carried out. This reduces the perceived visual artifacts while simultaneously preserving a maximum of luminance and contrast. The algorithm is implemented entirely on the GPU and is the first of its kind to run in real-time. KW - Maschinelles Sehen KW - CGI KW - Bildbasiertes Rendering KW - Display KW - Projektionsverfahren KW - Radiometrische Kompensation KW - Projektion KW - Projekor-Kamera System KW - Bildkorrektur KW - Visuelle Wahrnehmung KW - radiometric compensation KW - projection KW - projector-camera systems KW - image correction KW - visual perception Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-7848 ER - TY - RPRT A1 - Exner, David A1 - Bruns, Erich A1 - Kurz, Daniel A1 - Grundhöfer, Anselm A1 - Bimber, Oliver T1 - Fast and Reliable CAMShift Tracking N2 - CAMShift is a well-established and fundamental algorithm for kernel-based visual object tracking. While it performs well with objects that have a simple and constant appearance, it is not robust in more complex cases. As it solely relies on back projected probabilities it can fail in cases when the object's appearance changes (e.g. due to object or camera movement, or due to lighting changes), when similarly colored objects have to be re-detected or when they cross their trajectories. We propose extensions to CAMShift that address and resolve all of these problems. They allow the accumulation of multiple histograms to model more complex object appearance and the continuous monitoring of object identi- ties to handle ambiguous cases of partial or full occlusion. Most steps of our method are carried out on the GPU for achieving real-time tracking of multiple targets simultaneously. We explain an ecient GPU implementations of histogram generation, probability back projection, im- age moments computations, and histogram intersection. All of these techniques make full use of a GPU's high parallelization. KW - Bildverarbeitung KW - CAMShift KW - Kernel-Based Tracking KW - GPU Programming KW - CAMShift KW - Kernel-Based Tracking KW - GPU Programming Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20091217-14962 ER - TY - RPRT A1 - Grundhöfer, Anselm A1 - Seeger, Manja A1 - Häntsch, Ferry A1 - Bimber, Oliver T1 - Dynamic Adaptation of Projected Imperceptible Codes N2 - In this paper we present a novel adaptive imperceptible pattern projection technique that considers parameters of human visual perception. A coded image that is invisible for human observers is temporally integrated into the projected image, but can be reconstructed by a synchronized camera. The embedded code is dynamically adjusted on the fly to guarantee its non-perceivability and to adapt it to the current camera pose. Linked with real-time flash keying, for instance, this enables in-shot optical tracking using a dynamic multi-resolution marker technique. A sample prototype is realized that demonstrates the application of our method in the context of augmentations in television studios. KW - Association for Computing Machinery / Special Interest Group on Graphics KW - CGI KW - Maschinelles Sehen KW - Erweiterte Realität KW - Kamera Tracking KW - Projektion KW - Augmented Reality KW - Camera Tracking KW - Projection Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8168 ER -