TY - CHAP A1 - Biehounek, Josef A1 - Grolik, Helmut A1 - Herz, Susanne T1 - Zur Anwendung von Chaos-Entwicklungen in der Tragwerksstatik N2 - Seit mehr als fünfzig Jahren werden zur Untersuchung der Tragwerkssicherheit auch Methoden der Wahrscheinlichkeitsrechnung herangezogen. Ungeachtet der inzwischen erreichten Fortschritte und der offensichtlichen Vorzüge, konnte dieses Vorgehen in der Praxis bis jetzt noch nicht ausreichend Fuß fassen. Im Beitrag wird das Problem der Tragwerkssicherheit mit einem neuartigen Verfahren behandelt. Im Unterschied zu den üblichen probabilistischen Methoden geht es nicht von Verteilungsfunktionen aus. Vielmehr werden die maßgebenden Zufallsgrößen in den Mittelpunkt gestellt und direkt in die Rechenvorschrift eingeführt. Als mathematisches Hilfsmittel dienen die WIENERschen Chaos-Polynome. Sie stellen im Raum der Zufallsgrößen mit beschränkter Varianz eine Basis dar, mit der sich eine beliebige Zufallsgröße nach orthogonalen Polynomen GAUSSscher Zufallsgrößen entwickeln läßt. So entsteht ein effektiver Formalismus, der sich eng an die herkömmliche Deformationsmethode anlehnt und als deren probabilistische Verallgemeinerung angesprochen werden darf. Die Methode liefert die Grenzzustandsbedingung als Funktion der auf das Tragwerk wirkenden Zufallsgrößen. Die Versagenswahrscheinlichkeit kann daher durch Monte-Carlo-Simulation bestimmt werden. Die mit der Auswertung des Wahrscheinlichkeitsintegrals der First Order Reliability Method (FORM) verbundenen Schwierigkeiten werden vermieden. An einem Beispieltragwerk wird dargestellt, wie sich Veränderungen gewisser Konstruktionsparameter auf die Versagenswahrscheinlichkeit auswirken. KW - Baustatik KW - Sicherheit KW - Zufallsvariable KW - Chaostheorie Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2784 ER - TY - CHAP A1 - Biehounek, Josef A1 - Grolik, Helmut T1 - Zur voll-probabilistischen Verallgemeinerung des Kraftgrößenverfahrens N2 - Die Versagenswahrscheinlichkeit nach einem Grenzzustand wird gewöhnlich mit dem Integral I der Basisvariablen-Verteilungsdichte über den Versagensbereich bestimmt. Dabei ist eine geschlossene Lösung nur im Spezialfall normalverteilter Basisvariablen bei Linearität der Grenzzustandsgleichung möglich. In anderen Fällen sind verschiedene Näherungsverfahren gebräuchlich, die auf den Momenten der Basisvariablen und geeignet gewählten Indizes als Sicherheitskenngrößen beruhen. Eine größere Genauigkeit bieten die Zuverlässigkeitstheorien erster bzw. zweiter Ordnung, die ebenfalls von I ausgehen. Im Beitrag wird ein neuartiges Verfahren vorgestellt, dessen Ausgangspunkt nicht I, sondern das Kraftgrößenverfahren als einem Standardalgorithmus des konstruktiven Ingenieurbaus ist. Die Einbeziehung der maßgebenden Zufallsgrößen in die Matrix der Vorzahlen und die Belastungszahlen führt zur Verallgemeinerung des Systems der Elastizitätsgleichungen zum zufälligen System der Elastizitätsgleichungen. Dessen Lösung, die durch den Übergang zu einem deterministischen Ersatzsystem gewonnen wird, liefert die statisch Unbestimmten als Funktionen der im System wirkenden Zufallsgrößen (z.B. E-Modul der Stäbe und Belastung). Da dieser Zusammenhang analytisch vorliegt, kann die Wirkung einzelner Zufallseinflüsse auf die statisch Unbestimmten und die daraus folgenden sicherheitsrelevanten Zustandsgrößen beurteilt werden. Die Dichtefunktion der Grenzzustandsgleichung kann berechnet oder durch Simulation ermittelt werden. Daraus folgt . Nicht normalverteilte Zufallsgrößen werden durch Entwicklung in orthogonale Polynome Gaußscher Zufallsgrößen berücksichtigt. KW - Kraftmethode KW - Versagen KW - Wahrscheinlichkeitsrechnung Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-5728 ER -