TY - CHAP A1 - Häfner, Stefan A1 - Eckardt, Stefan A1 - Könke, Carsten T1 - A geometrical inclusion-matrix model for the finite element analysis of concrete at multiple scales N2 - This paper introduces a method to generate adequate inclusion-matrix geometries of concrete in two and three dimensions, which are independent of any specific numerical discretization. The article starts with an analysis on shapes of natural aggregates and discusses corresponding mathematical realizations. As a first prototype a two-dimensional generation of a mesoscale model is introduced. Particle size distribution functions are analysed and prepared for simulating an adequate three-dimensional representation of the aggregates within a concrete structure. A sample geometry of a three-dimensional test cube is generated and the finite element analysis of its heterogeneous geometry by a uniform mesh is presented. Concluding, aspects of a multiscale analysis are discussed and possible enhancements are proposed. KW - Beton KW - Dreidimensionales Modell KW - Finite-Elemente-Methode Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-3018 ER - TY - JOUR A1 - Häfner, Stefan A1 - Eckardt, Stefan A1 - Luther, Torsten A1 - Könke, Carsten T1 - Mesoscale modeling of concrete: Geometry and numerics JF - Computers and Structures N2 - Mesoscale modeling of concrete: Geometry and numerics KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2006 SP - 450 EP - 461 ER - TY - JOUR A1 - Könke, Carsten A1 - Eckardt, Stefan A1 - Häfner, Stefan A1 - Luther, Torsten A1 - Unger, Jörg F. T1 - Multiscale simulation methods in damage prediction of brittle and ductile materials JF - International Journal for Multiscale Computational Engineering N2 - Multiscale simulation methods in damage prediction of brittle and ductile materials KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2010 SP - 17 EP - 36 ER -