TY - JOUR A1 - Fathi, Sadegh A1 - Sajadzadeh, Hassan A1 - Mohammadi Sheshkal, Faezeh A1 - Aram, Farshid A1 - Pinter, Gergo A1 - Felde, Imre A1 - Mosavi, Amir T1 - The Role of Urban Morphology Design on Enhancing Physical Activity and Public Health JF - International Journal of Environmental Research and Public Health N2 - Along with environmental pollution, urban planning has been connected to public health. The research indicates that the quality of built environments plays an important role in reducing mental disorders and overall health. The structure and shape of the city are considered as one of the factors influencing happiness and health in urban communities and the type of the daily activities of citizens. The aim of this study was to promote physical activity in the main structure of the city via urban design in a way that the main form and morphology of the city can encourage citizens to move around and have physical activity within the city. Functional, physical, cultural-social, and perceptual-visual features are regarded as the most important and effective criteria in increasing physical activities in urban spaces, based on literature review. The environmental quality of urban spaces and their role in the physical activities of citizens in urban spaces were assessed by using the questionnaire tool and analytical network process (ANP) of structural equation modeling. Further, the space syntax method was utilized to evaluate the role of the spatial integration of urban spaces on improving physical activities. Based on the results, consideration of functional diversity, spatial flexibility and integration, security, and the aesthetic and visual quality of urban spaces plays an important role in improving the physical health of citizens in urban spaces. Further, more physical activities, including motivation for walking and the sense of public health and happiness, were observed in the streets having higher linkage and space syntax indexes with their surrounding texture. KW - Morphologie KW - Gesundheitswesen KW - Intelligente Stadt KW - Nachhaltigkeit KW - Gesundheitsinformationssystem KW - urban morphology KW - public health KW - physical activities KW - health KW - public space KW - urban health KW - smart cities KW - sustainability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200402-41225 UR - https://www.mdpi.com/1660-4601/17/7/2359 VL - 2020 IS - Volume 17, Issue 7, 2359 PB - MDPI CY - Basel ER - TY - JOUR A1 - Karimimoshaver, Mehrdad A1 - Hajivaliei, Hatameh A1 - Shokri, Manouchehr A1 - Khalesro, Shakila A1 - Aram, Farshid A1 - Shamshirband, Shahaboddin T1 - A Model for Locating Tall Buildings through a Visual Analysis Approach JF - Applied Sciences N2 - Tall buildings have become an integral part of cities despite all their pros and cons. Some current tall buildings have several problems because of their unsuitable location; the problems include increasing density, imposing traffic on urban thoroughfares, blocking view corridors, etc. Some of these buildings have destroyed desirable views of the city. In this research, different criteria have been chosen, such as environment, access, social-economic, land-use, and physical context. These criteria and sub-criteria are prioritized and weighted by the analytic network process (ANP) based on experts’ opinions, using Super Decisions V2.8 software. On the other hand, layers corresponding to sub-criteria were made in ArcGIS 10.3 simultaneously, then via a weighted overlay (map algebra), a locating plan was created. In the next step seven hypothetical tall buildings (20 stories), in the best part of the locating plan, were considered to evaluate how much of theses hypothetical buildings would be visible (fuzzy visibility) from the street and open spaces throughout the city. These processes have been modeled by MATLAB software, and the final fuzzy visibility plan was created by ArcGIS. Fuzzy visibility results can help city managers and planners to choose which location is suitable for a tall building and how much visibility may be appropriate. The proposed model can locate tall buildings based on technical and visual criteria in the future development of the city and it can be widely used in any city as long as the criteria and weights are localized. KW - Gebäude KW - Energieeffizienz KW - Sustainability KW - Infrastructures KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210122-43350 UR - https://www.mdpi.com/2076-3417/10/17/6072 VL - 2020 IS - Volume 10, issue 17, article 6072 SP - 1 EP - 25 PB - MDPI CY - Basel ER - TY - JOUR A1 - Faroughi, Maryam A1 - Karimimoshaver, Mehrdad A1 - Aram, Farshid A1 - Solgi, Ebrahim A1 - Mosavi, Amir A1 - Nabipour, Narjes A1 - Chau, Kwok-Wing T1 - Computational modeling of land surface temperature using remote sensing data to investigate the spatial arrangement of buildings and energy consumption relationship JF - Engineering Applications of Computational Fluid Mechanics N2 - The effect of urban form on energy consumption has been the subject of various studies around the world. Having examined the effect of buildings on energy consumption, these studies indicate that the physical form of a city has a notable impact on the amount of energy consumed in its spaces. The present study identified the variables that affected energy consumption in residential buildings and analyzed their effects on energy consumption in four neighborhoods in Tehran: Apadana, Bimeh, Ekbatan-phase I, and Ekbatan-phase II. After extracting the variables, their effects are estimated with statistical methods, and the results are compared with the land surface temperature (LST) remote sensing data derived from Landsat 8 satellite images taken in the winter of 2019. The results showed that physical variables, such as the size of buildings, population density, vegetation cover, texture concentration, and surface color, have the greatest impacts on energy usage. For the Apadana neighborhood, the factors with the most potent effect on energy consumption were found to be the size of buildings and the population density. However, for other neighborhoods, in addition to these two factors, a third factor was also recognized to have a significant effect on energy consumption. This third factor for the Bimeh, Ekbatan-I, and Ekbatan-II neighborhoods was the type of buildings, texture concentration, and orientation of buildings, respectively. KW - Fernerkung KW - Intelligente Stadt KW - Oberflächentemperatur KW - remote sensing KW - smart cities KW - Land surface temperature KW - energy consumption KW - residential buildings KW - urban morphology KW - urban sustainability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200110-40585 UR - https://www.tandfonline.com/doi/full/10.1080/19942060.2019.1707711 VL - 2020 IS - Volume 14, No. 1 SP - 254 EP - 270 PB - Taylor & Francis ER -