TY - THES A1 - Hamzah, Abdulrazzak T1 - Lösung von Randwertaufgaben der Bruchmechanik mit Hilfe einer approximationsbasierten Kopplung zwischen der Finite-Elemente-Methode und Methoden der komplexen Analysis N2 - Das Hauptziel der vorliegenden Arbeit war es, eine stetige Kopplung zwischen der ananlytischen und numerischen Lösung von Randwertaufgaben mit Singularitäten zu realisieren. Durch die inter-polationsbasierte gekoppelte Methode kann eine globale C0 Stetigkeit erzielt werden. Für diesen Zweck wird ein spezielle finite Element (Kopplungselement) verwendet, das die Stetigkeit der Lösung sowohl mit dem analytischen Element als auch mit den normalen CST Elementen gewährleistet. Die interpolationsbasierte gekoppelte Methode ist zwar für beliebige Knotenanzahl auf dem Interface ΓAD anwendbar, aber es konnte durch die Untersuchung von der Interpolationsmatrix und numerische Simulationen festgestellt werden, dass sie schlecht konditioniert ist. Um das Problem mit den numerischen Instabilitäten zu bewältigen, wurde eine approximationsbasierte Kopplungsmethode entwickelt und untersucht. Die Stabilität dieser Methode wurde anschließend anhand der Untersuchung von der Gramschen Matrix des verwendeten Basissystems auf zwei Intervallen [−π,π] und [−2π,2π] beurteilt. Die Gramsche Matrix auf dem Intervall [−2π,2π] hat einen günstigeren Konditionszahl in der Abhängigkeit von der Anzahl der Kopplungsknoten auf dem Interface aufgewiesen. Um die dazu gehörigen numerischen Instabilitäten ausschließen zu können wird das Basissystem mit Hilfe vom Gram-Schmidtschen Orthogonalisierungsverfahren auf beiden Intervallen orthogonalisiert. Das orthogonale Basissystem lässt sich auf dem Intervall [−2π,2π] mit expliziten Formeln schreiben. Die Methode des konsistentes Sampling, die häufig in der Nachrichtentechnik verwendet wird, wurde zur Realisierung von der approximationsbasierten Kopplung herangezogen. Eine Beschränkung dieser Methode ist es, dass die Anzahl der Sampling-Basisfunktionen muss gleich der Anzahl der Wiederherstellungsbasisfunktionen sein. Das hat dazu geführt, dass das eingeführt Basissys-tem (mit 2 n Basisfunktionen) nur mit n Basisfunktion verwendet werden kann. Zur Lösung diese Problems wurde ein alternatives Basissystems (Variante 2) vorgestellt. Für die Verwendung dieses Basissystems ist aber eine Transformationsmatrix M nötig und bei der Orthogonalisierung des Basissystems auf dem Intervall [−π,π] kann die Herleitung von dieser Matrix kompliziert und aufwendig sein. Die Formfunktionen wurden anschließend für die beiden Varianten hergeleitet und grafisch (für n = 5) dargestellt und wurde gezeigt, dass diese Funktionen die Anforderungen an den Formfunktionen erfüllen und können somit für die FE- Approximation verwendet werden. Anhand numerischer Simulationen, die mit der Variante 1 (mit Orthogonalisierung auf dem Intervall [−2π,2π]) durchgeführt wurden, wurden die grundlegenden Fragen (Beispielsweise: Stetigkeit der Verformungen auf dem Interface ΓAD, Spannungen auf dem analytischen Gebiet) über- prüft. KW - Mathematik KW - Bruchmechanik KW - Näherungsverfahren Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200211-40936 ER - TY - THES A1 - Bock, Sebastian T1 - Approximation mit polynomialen Lösungen der Laméschen Differentialgleichung T1 - Approximation with Polynomial Solutions of Lamé Differential Equation N2 - Grundidee der Arbeit ist es, Lösungen von Randwertaufgaben durch Linearkombinationen exakter klassischer Lösungen der Differentialgleichung zu approximieren. Die freien Koeffizienten werden dabei durch die Bestimmung der besten Approximation der Randwerte berechnet. Als Basis der Approximation werden vollständige orthogonale und nahezu orthogonale Funktionensysteme verwendet. Anhand ausgewählter Beispiele mit Randvorgaben unterschiedlicher Glattheit wird am Beispiel der Kugel die prinzipielle Anwendbarkeit der Methode getestet und hinsichtlich der Entwicklung des Fehlers der Näherungslösung, der Stabilität des Verfahrens und des numerischen Aufwandes untersucht. Die erhaltenen Resultate geben einen begründeten Anlass, die Anwendung der Methode als Bestandteil einer hybriden analytisch-numerischen Methode, insbesondere der Verknüpfung mit der FEM, weiterzuverfolgen. KW - Legendre-Funktion KW - Lamé-Gleichung KW - Festkörpermechanik KW - Orthonormalbasis KW - Beste Approximation KW - Fourier-Reihe KW - Hyperholomorphe-Funktion KW - spherical harmonics KW - Lamé-equation KW - continuum mechanic KW - complete orthonormal system KW - best approximation Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-6409 N1 - Der Volltext-Zugang wurde im Zusammenhang mit der Klärung urheberrechtlicher Fragen mit sofortiger Wirkung gesperrt. ER -