TY - RPRT A1 - Amano, Toshiyuki A1 - Bimber, Oliver A1 - Grundhöfer, Anselm T1 - Appearance Enhancement for Visually Impaired with Projector Camera Feedback N2 - Visually impaired is a common problem for human life in the world wide. The projector-based AR technique has ability to change appearance of real object, and it can help to improve visibility for visually impaired. We propose a new framework for the appearance enhancement with the projector camera system that employed model predictive controller. This framework enables arbitrary image processing such as photo-retouch software in the real world and it helps to improve visibility for visually impaired. In this article, we show the appearance enhancement result of Peli's method and Wolffshon's method for the low vision, Jefferson's method for color vision deficiencies. Through experiment results, the potential of our method to enhance the appearance for visually impaired was confirmed as same as appearance enhancement for the digital image and television viewing. KW - Maschinelles Sehen KW - Projector Camera System KW - Model Predictive Control KW - Visually Impaired Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20100106-14974 ER - TY - CHAP A1 - Bimber, Oliver T1 - HOLOGRAPHICS: Combining Holograms with Interactive Computer Graphics T2 - New Directions in Holography and Speckles N2 - Among all imaging techniques that have been invented throughout the last decades, computer graphics is one of the most successful tools today. Many areas in science, entertainment, education, and engineering would be unimaginable without the aid of 2D or 3D computer graphics. The reason for this success story might be its interactivity, which is an important property that is still not provided efficiently by competing technologies – such as holography. While optical holography and digital holography are limited to presenting a non-interactive content, electroholography or computer generated holograms (CGH) facilitate the computer-based generation and display of holograms at interactive rates [2,3,29,30]. Holographic fringes can be computed by either rendering multiple perspective images, then combining them into a stereogram [4], or simulating the optical interference and calculating the interference pattern [5]. Once computed, such a system dynamically visualizes the fringes with a holographic display. Since creating an electrohologram requires processing, transmitting, and storing a massive amount of data, today’s computer technology still sets the limits for electroholography. To overcome some of these performance issues, advanced reduction and compression methods have been developed that create truly interactive electroholograms. Unfortunately, most of these holograms are relatively small, low resolution, and cover only a small color spectrum. However, recent advances in consumer graphics hardware may reveal potential acceleration possibilities that can overcome these limitations [6]. In parallel to the development of computer graphics and despite their non-interactivity, optical and digital holography have created new fields, including interferometry, copy protection, data storage, holographic optical elements, and display holograms. Especially display holography has conquered several application domains. Museum exhibits often use optical holograms because they can present 3D objects with almost no loss in visual quality. In contrast to most stereoscopic or autostereoscopic graphics displays, holographic images can provide all depth cues—perspective, binocular disparity, motion parallax, convergence, and accommodation—and theoretically can be viewed simultaneously from an unlimited number of positions. Displaying artifacts virtually removes the need to build physical replicas of the original objects. In addition, optical holograms can be used to make engineering, medical, dental, archaeological, and other recordings—for teaching, training, experimentation and documentation. Archaeologists, for example, use optical holograms to archive and investigate ancient artifacts [7,8]. Scientists can use hologram copies to perform their research without having access to the original artifacts or settling for inaccurate replicas. Optical holograms can store a massive amount of information on a thin holographic emulsion. This technology can record and reconstruct a 3D scene with almost no loss in quality. Natural color holographic silver halide emulsion with grain sizes of 8nm is today’s state-of-the-art [14]. Today, computer graphics and raster displays offer a megapixel resolution and the interactive rendering of megabytes of data. Optical holograms, however, provide a terapixel resolution and are able to present an information content in the range of terabytes in real-time. Both are dimensions that will not be reached by computer graphics and conventional displays within the next years – even if Moore’s law proves to hold in future. Obviously, one has to make a decision between interactivity and quality when choosing a display technology for a particular application. While some applications require high visual realism and real-time presentation (that cannot be provided by computer graphics), others depend on user interaction (which is not possible with optical and digital holograms). Consequently, holography and computer graphics are being used as tools to solve individual research, engineering, and presentation problems within several domains. Up until today, however, these tools have been applied separately. The intention of the project which is summarized in this chapter is to combine both technologies to create a powerful tool for science, industry and education. This has been referred to as HoloGraphics. Several possibilities have been investigated that allow merging computer generated graphics and holograms [1]. The goal is to combine the advantages of conventional holograms (i.e. extremely high visual quality and realism, support for all depth queues and for multiple observers at no computational cost, space efficiency, etc.) with the advantages of today’s computer graphics capabilities (i.e. interactivity, real-time rendering, simulation and animation, stereoscopic and autostereoscopic presentation, etc.). The results of these investigations are presented in this chapter. KW - Erweiterte Realität KW - CGI KW - Hologramm KW - Projektionsapparat KW - Rendering KW - Scanning KW - Reconstruction KW - computer grafik KW - computer graphics Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-7365 ER - TY - CHAP A1 - Bimber, Oliver T1 - Projector-Based Augmentation T2 - Emerging Technologies of Augmented Reality: Interfaces & Design N2 - Projector-based augmentation approaches hold the potential of combining the advantages of well-establishes spatial virtual reality and spatial augmented reality. Immersive, semi-immersive and augmented visualizations can be realized in everyday environments – without the need for special projection screens and dedicated display configurations. Limitations of mobile devices, such as low resolution and small field of view, focus constrains, and ergonomic issues can be overcome in many cases by the utilization of projection technology. Thus, applications that do not require mobility can benefit from efficient spatial augmentations. Examples range from edutainment in museums (such as storytelling projections onto natural stone walls in historical buildings) to architectural visualizations (such as augmentations of complex illumination simulations or modified surface materials in real building structures). This chapter describes projector-camera methods and multi-projector techniques that aim at correcting geometric aberrations, compensating local and global radiometric effects, and improving focus properties of images projected onto everyday surfaces. KW - Erweiterte Realität KW - Virtuelle Realität KW - Projektionsverfahren KW - CGI KW - Bildbasiertes Rendering KW - Rendering KW - Projektor-Kamera Systeme KW - Multi-Projektor Systeme KW - projector-camera systems KW - multi-projector systems KW - spatial augmented reality Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-7353 ER - TY - RPRT A1 - Bimber, Oliver T1 - Superimposing Dynamic Range N2 - Replacing a uniform illumination by a high-frequent illumination enhances the contrast of observed and captured images. We modulate spatially and temporally multiplexed (projected) light with reflective or transmissive matter to achieve high dynamic range visualizations of radiological images on printed paper or ePaper, and to boost the optical contrast of images viewed or imaged with light microscopes. KW - Bildverarbeitung KW - CGI KW - Computergraphik KW - Kontrast KW - Projektor-Kamera Systeme KW - Hoher Dynamikumfang KW - Mikroskopie KW - Contrast KW - Projector-Camera Systems KW - High Dynamic Range KW - Microscopy Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20090303-14662 ER - TY - JOUR A1 - Bimber, Oliver A1 - Grundhöfer, Anselm A1 - Zollmann, Stefanie A1 - Kolster, Daniel T1 - Digital Illumination for Augmented Studios N2 - Virtual studio technology plays an important role for modern television productions. Blue-screen matting is a common technique for integrating real actors or moderators into computer generated sceneries. Augmented reality offers the possibility to mix real and virtual in a more general context. This article proposes a new technological approach for combining real studio content with computergenerated information. Digital light projection allows a controlled spatial, temporal, chrominance and luminance modulation of illumination – opening new possibilities for TV studios. KW - Studiotechnik KW - Erweiterte Realität KW - Fernsehproduktion KW - Projektion KW - Augmented studio KW - Augmented reality KW - digital light projection Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8576 ER - TY - RPRT A1 - Bimber, Oliver A1 - Iwai, Daisuke T1 - Superimposing Dynamic Range N2 - We present a simple and cost-efficient way of extending contrast, perceived tonal resolution, and the color space of static hardcopy images, beyond the capabilities of hardcopy devices or low-dynamic range displays alone. A calibrated projector-camera system is applied for automatic registration, scanning and superimposition of hardcopies. We explain how high-dynamic range content can be split for linear devices with different capabilities, how luminance quantization can be optimized with respect to the non-linear response of the human visual system as well as for the discrete nature of the applied modulation devices; and how inverse tone-mapping can be adapted in case only untreated hardcopies and softcopies (such as regular photographs) are available. We believe that our approach has the potential to complement hardcopy-based technologies, such as X-ray prints for filmless imaging, in domains that operate with high quality static image content, like radiology and other medical fields, or astronomy. KW - Bildverarbeitung KW - CGI KW - Computergraphik KW - Kontrast KW - Projektor-Kamera Systeme KW - Hoher Dynamikumfang KW - Contrast KW - Projector-Camera Systems KW - High Dynamic Range Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20080422-13585 ER - TY - JOUR A1 - Bimber, Oliver A1 - Iwai, Daisuke T1 - Superimposing Dynamic Range JF - Eurographics 2009 N2 - Replacing a uniform illumination by a high-frequent illumination enhances the contrast of observed and captured images. We modulate spatially and temporally multiplexed (projected) light with reflective or transmissive matter to achieve high dynamic range visualizations of radiological images on printed paper or ePaper, and to boost the optical contrast of images viewed or imaged with light microscopes. KW - CGI KW - Computer graphics KW - Image processing KW - Computer vision KW - 54.73 Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20120130-15325 ER - TY - JOUR A1 - Brombach, Benjamin A1 - Bruns, Erich A1 - Bimber, Oliver T1 - Subobject Detection through Spatial Relationships on Mobile Phones N2 - We present a novel image classification technique for detecting multiple objects (called subobjects) in a single image. In addition to image classifiers, we apply spatial relationships among the subobjects to verify and to predict locations of detected and undetected subobjects, respectively. By continuously refining the spatial relationships throughout the detection process, even locations of completely occluded exhibits can be determined. Finally, all detected subobjects are labeled and the user can select the object of interest for retrieving corresponding multimedia information. This approach is applied in the context of PhoneGuide, an adaptive museum guidance system for camera-equipped mobile phones. We show that the recognition of subobjects using spatial relationships is up to 68% faster than related approaches without spatial relationships. Results of a field experiment in a local museum illustrate that unexperienced users reach an average recognition rate for subobjects of 85.6% under realistic conditions. KW - Objekterkennung KW - Smartphone KW - Subobjekterkennung KW - Räumliche Beziehungen KW - Neuronales Netz KW - Museumsführer KW - Subobject Detection KW - Spatial Relationships KW - Neural Networks KW - Museum Guidance Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20081007-14296 ER - TY - JOUR A1 - Bruns, Erich A1 - Bimber, Oliver T1 - Phone-to-Phone Communication for Adaptive Image Classification N2 - In this paper, we present a novel technique for adapting local image classifiers that are applied for object recognition on mobile phones through ad-hoc network communication between the devices. By continuously accumulating and exchanging collected user feedback among devices that are located within signal range, we show that our approach improves the overall classification rate and adapts to dynamic changes quickly. This technique is applied in the context of PhoneGuide – a mobile phone based museum guidance framework that combines pervasive tracking and local object recognition for identifying a large number of objects in uncontrolled museum environments. KW - Peer-to-Peer-Netz KW - Bilderkennung KW - Museumsführer KW - Ad-hoc-Netz KW - Phone-to-phone communication KW - adaptive image classification KW - mobile ad-hoc networks KW - museum guidance system Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20080722-13685 ER - TY - RPRT A1 - Bruns, Erich A1 - Bimber, Oliver T1 - Adaptive Training of Video Sets for Image Recognition on Mobile Phones N2 - We present an enhancement towards adaptive video training for PhoneGuide, a digital museum guidance system for ordinary camera–equipped mobile phones. It enables museum visitors to identify exhibits by capturing photos of them. In this article, a combined solution of object recognition and pervasive tracking is extended to a client–server–system for improving data acquisition and for supporting scale–invariant object recognition. KW - Objektverfolgung KW - Neuronales Netz KW - Handy KW - Objekterkennung KW - Museum KW - Anpassung KW - mobile phones KW - object recognition KW - neural networks KW - museum guidance KW - pervasive tracking KW - temporal adaptation Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8223 ER -