TY - JOUR A1 - Teitelbaum, Eric A1 - Alsaad, Hayder A1 - Aviv, Dorit A1 - Kim, Alexander A1 - Völker, Conrad A1 - Meggers, Forrest A1 - Pantelic, Jovan T1 - Addressing a systematic error correcting for free and mixed convection when measuring mean radiant temperature with globe thermometers JF - Scientific reports N2 - It is widely accepted that most people spend the majority of their lives indoors. Most individuals do not realize that while indoors, roughly half of heat exchange affecting their thermal comfort is in the form of thermal infrared radiation. We show that while researchers have been aware of its thermal comfort significance over the past century, systemic error has crept into the most common evaluation techniques, preventing adequate characterization of the radiant environment. Measuring and characterizing radiant heat transfer is a critical component of both building energy efficiency and occupant thermal comfort and productivity. Globe thermometers are typically used to measure mean radiant temperature (MRT), a commonly used metric for accounting for the radiant effects of an environment at a point in space. In this paper we extend previous field work to a controlled laboratory setting to (1) rigorously demonstrate that existing correction factors used in the American Society of Heating Ventilation and Air-conditioning Engineers (ASHRAE) Standard 55 or ISO7726 for using globe thermometers to quantify MRT are not sufficient; (2) develop a correction to improve the use of globe thermometers to address problems in the current standards; and (3) show that mean radiant temperature measured with ping-pong ball-sized globe thermometers is not reliable due to a stochastic convective bias. We also provide an analysis of the maximum precision of globe sensors themselves, a piece missing from the domain in contemporary literature. KW - Strahlungstemperatur KW - Mean radiant temperature KW - Globe thermometers KW - Indoor environment KW - Thermal comfort KW - Measurements KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220509-46363 UR - https://www.nature.com/articles/s41598-022-10172-5#citeas VL - 2022 IS - Volume 12, article 6473 PB - Springer Nature CY - London ER - TY - JOUR A1 - Becher, Lia A1 - Völker, Conrad A1 - Rodehorst, Volker A1 - Kuhne, Michael T1 - Background-oriented schlieren technique for two-dimensional visualization of convective indoor air flows JF - Optics and Lasers in Engineering N2 - This article focuses on further developments of the background-oriented schlieren (BOS) technique to visualize convective indoor air flow, which is usually defined by very small density gradients. Since the light rays deflect when passing through fluids with different densities, BOS can detect the resulting refractive index gradients as integration along a line of sight. In this paper, the BOS technique is used to yield a two-dimensional visualization of small density gradients. The novelty of the described method is the implementation of a highly sensitive BOS setup to visualize the ascending thermal plume from a heated thermal manikin with temperature differences of minimum 1 K. To guarantee steady boundary conditions, the thermal manikin was seated in a climate laboratory. For the experimental investigations, a high-resolution DLSR camera was used capturing a large field of view with sufficient detail accuracy. Several parameters such as various backgrounds, focal lengths, room air temperatures, and distances between the object of investigation, camera, and structured background were tested to find the most suitable parameters to visualize convective indoor air flow. Besides these measurements, this paper presents the analyzing method using cross-correlation algorithms and finally the results of visualizing the convective indoor air flow with BOS. The highly sensitive BOS setup presented in this article complements the commonly used invasive methods that highly influence weak air flows. KW - Raumklima KW - Raumluftströmungen KW - Flow visualization KW - Convective indoor air flow KW - Background-oriented schlieren KW - Human thermal plume KW - Cross-correlation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220810-46972 N1 - This article is published by Elsevier in Optics and Lasers in Engineering 134 (2020) 106282 and may be found at https://doi.org/10.1016/j.optlaseng.2020.106282 Copyright © 2020 Elsevier Ltd. All rights reserved. This article may be downloaded for personal use only. Any other use requires prior permission of the authors and Elsevier Ltd. VL - 2020 IS - Volume 134, article 106282 ER - TY - JOUR A1 - Alsaad, Hayder A1 - Völker, Conrad T1 - Could the ductless personalized ventilation be an alternative to the regular ducted personalized ventilation? JF - Indoor Air N2 - This study investigates the performance of two systems: personalized ventilation (PV) and ductless personalized ventilation (DPV). Even though the literature indicates a compelling performance of PV, it is not often used in practice due to its impracticality. Therefore, the present study assesses the possibility of replacing the inflexible PV with DPV in office rooms equipped with displacement ventilation (DV) in the summer season. Numerical simulations were utilized to evaluate the inhaled concentration of pollutants when PV and DPV are used. The systems were compared in a simulated office with two occupants: a susceptible occupant and a source occupant. Three types of pollution were simulated: exhaled infectious air, dermally emitted contamination, and room contamination from a passive source. Results indicated that PV improved the inhaled air quality regardless of the location of the pollution source; a higher PV supply flow rate positively impacted the inhaled air quality. Contrarily, the performance of DPV was highly sensitive to the source location and the personalized flow rate. A higher DPV flow rate tends to decrease the inhaled air quality due to increased mixing of pollutants in the room. Moreover, both systems achieved better results when the personalized system of the source occupant was switched off. KW - Strömungsmechanik KW - Kontamination KW - Belüftung KW - Luftqualität KW - computational fluid dynamics KW - cross-contamination KW - ductless personalized ventilation KW - indoor air quality KW - tracer gas Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200805-42072 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/ina.12720 VL - 2020 PB - John Wiley & Sons Ltd ER - TY - JOUR A1 - Vogel, Albert A1 - Arnold, Jörg A1 - Voelker, Conrad A1 - Kornadt, Oliver T1 - Data for sound pressure level prediction in lightweight constructions caused by structure-borne sound sources and their uncertainties JF - Data in Brief N2 - When predicting sound pressure levels induced by structure-borne sound sources and describing the sound propagation path through the building structure as exactly as possible, it is necessary to characterize the vibration behavior of the structure-borne sound sources. In this investigation, the characterization of structure-borne sound sources was performed using the two-stage method (TSM) described in EN 15657. Four different structure-borne sound sources were characterized and subsequently installed in a lightweight test stand. The resulting sound pressure levels in an adjacent receiving room were measured. In the second step, sound pressure levels were predicted according to EN 12354-5 based on the parameters of the structure-borne sound sources. Subsequently, the predicted and the measured sound pressure levels were compared to obtain reliable statements on the achievable accuracy when using source quantities determined by TSM with this prediction method. KW - Bauakustik KW - Körperschall KW - building acoustics KW - structure-borne sound KW - sound pressure level prediction KW - structure-borne sound sources KW - OA-Publikationsfonds2023 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230719-64114 UR - https://www.sciencedirect.com/science/article/pii/S2352340923004110?via%3Dihub VL - 2023 IS - Volume 48, June 2023, article 109292 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Alsaad, Hayder A1 - Völker, Conrad T1 - Der Kühlungseffekt der personalisierten Lüftung T1 - The cooling effect of personalized ventilation systems JF - Bauphysik N2 - Personalisierte Lüftung (PL) kann die thermische Behaglichkeit sowie die Qualität der eingeatmeten Atemluft verbessern, in dem jedem Arbeitsplatz Frischluft separat zugeführt wird. In diesem Beitrag wird die Wirkung der PL auf die thermische Behaglichkeit der Nutzer unter sommerlichen Randbedingungen untersucht. Hierfür wurden zwei Ansätze zur Bewertung des Kühlungseffekts der PL untersucht: basierend auf (1) der äquivalenten Temperatur und (2) dem thermischen Empfinden. Grundlage der Auswertung sind in einer Klimakammer gemessene sowie numerisch simulierte Daten. Vor der Durchführung der Simulationen wurde das numerische Modell zunächst anhand der gemessenen Daten validiert. Die Ergebnisse zeigen, dass der Ansatz basierend auf dem thermischen Empfinden zur Evaluierung des Kühlungseffekts der PL sinnvoller sein kann, da bei diesem die komplexen physiologischen Faktoren besser berücksichtigt werden. N2 - Personalized ventilation (PV) can improve thermal comfort and inhaled air quality by supplying air to each workstation separately. This study investigates the impact of PV on the thermal state of the users under summer boundary conditions. Two approaches to evaluating the cooling effect of PV were investigated, based on equivalent temperature and based on thermal sensation. Both approaches implemented measured and simulated values of the cooling effect of PV. Before conducting the simulations, the numerical model was first validated against measured data collected in a climate chamber equipped with a thermal manikin. Results indicated that the thermal sensation approach can be more suitable for evaluating the cooling effect of PV due to the complex physiological factors it considers. KW - Lüftung KW - Strömung KW - Raumklima KW - Temperatur KW - personalized ventilation KW - computational fluid dynamics KW - Simulation KW - personalisierte Lüftung KW - äquivalente Temperatur KW - thermisches Empfinden Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20201020-42723 UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/bapi.202000018 N1 - © 2020 Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin. Dieser Artikel kann für den persönlichen Gebrauch heruntergeladen werden. Andere Verwendungen bedürfen der vorherigen Zustimmung der Autoren und des Verlags Ernst & Sohn. Der folgende Artikel erschien in der Bauphysik 42 (2020), Heft 5, 218-225, DOI: 10.1002/bapi.202000018 VL - 2020 IS - volume 42, issue 5 SP - 218 EP - 225 PB - Ernst & Sohn bei John Wiley & Sons CY - Hoboken ER - TY - JOUR A1 - Pollack, Moritz A1 - Lück, Andrea A1 - Wolf, Mario A1 - Kraft, Eckhard A1 - Völker, Conrad T1 - Energy and Business Synergy: Leveraging Biogenic Resources from Agriculture, Waste, and Wastewater in German Rural Areas JF - Sustainability N2 - The imperative to transform current energy provisions is widely acknowledged. However, scant attention has hitherto been directed toward rural municipalities and their innate resources, notably biogenic resources. In this paper, a methodological framework is developed to interconnect resources from waste, wastewater, and agricultural domains for energy utilization. This entails cataloging existing resources, delineating their potential via quantitative assessments utilizing diverse technologies, and encapsulating them in a conceptual model. The formulated models underwent iterative evaluation with engagement from diverse stakeholders. Consequently, 3 main concepts, complemented by 72 sub-concepts, were delineated, all fostering positive contributions to climate protection and providing heat supply in the rural study area. The outcomes’ replicability is underscored by the study area’s generic structure and the employed methodology. Through these inquiries, a framework for the requisite energy transition, with a pronounced emphasis on the coupling of waste, wastewater, and agriculture sectors in rural environments, is robustly analyzed. KW - Energiewende KW - Energieplanung KW - Abfallwirtschaft KW - organischer Abfall KW - Biomasse KW - Regionalentwicklung KW - biogene Abfallstoffe KW - Abwassermanagement KW - OA-Publikationsfonds2023 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20231222-65172 UR - https://www.mdpi.com/2071-1050/15/24/16573 VL - 2023 IS - volume 15, issue 24, article 16573 SP - 1 EP - 25 PB - MDPI CY - Basel ER - TY - JOUR A1 - Alsaad, Hayder A1 - Hartmann, Maria A1 - Hilbel, Rebecca A1 - Völker, Conrad T1 - ENVI-met validation data accompanied with simulation data of the impact of facade greening on the urban microclimate JF - Data in Brief N2 - This dataset consists mainly of two subsets. The first subset includes measurements and simulation data conducted to validate the simulation tool ENVI-met. The measurements were conducted at the campus of the Bauhaus-University Weimar in Weimar, Germany and consisted of recording exterior air temperature, globe temperature, relative humidity, and wind velocity at 1.5 m at four points on four different days. After the measurements, the geometry of the campus was modelled and meshed; the simulations were conducted using the weather data of the measurements days with the aim of investigating the accuracy of the model. The second data subset consists of ENVI-met simulation data of the potential of facade greening in improving the outdoor environment and the indoor air temperature during heatwaves in Central European cities. The data consist of the boundary conditions and the simulation output of two simulation models: with and without facade greening. The geometry of the models corresponded to a residential buildings district in Stuttgart, Germany. The simulation output consisted of exterior air temperature, mean radiant temperature, relative humidity, and wind velocity at 12 different probe points in the model in addition to the indoor air temperature of an exemplary building. The dataset presents both vertical profiles of the probed parameters as well as the time series output of the five-day simulation duration. Both data subsets correspond to the investigations presented in the co-submitted article [1]. KW - Messung KW - Measurements KW - Simulations KW - ENVI-met KW - Living wall KW - Green facade KW - Simulation KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220511-46455 UR - https://www.sciencedirect.com/science/article/pii/S2352340922004048#! VL - 2022 IS - Volume 42, article 108200 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Alsaad, Hayder A1 - Hartmann, Maria A1 - Völker, Conrad T1 - Hygrothermal simulation data of a living wall system for decentralized greywater treatment JF - Data in Brief N2 - This dataset presents the numerical analysis of the heat and moisture transport through a facade equipped with a living wall system designated for greywater treatment. While such greening systems provide many environmental benefits, they involve pumping large quantities of water onto the wall assembly, which can increase the risk of moisture in the wall as well as impaired energetic performance due to increased thermal conductivity with increased moisture content in the building materials. This dataset was acquired through numerical simulation using the coupling of two simulation tools, namely Envi-Met and Delphin. This coupling was used to include the complex role the plants play in shaping the near-wall environmental parameters in the hygrothermal simulations. Four different wall assemblies were investigated, each assembly was assessed twice: with and without the living wall. The presented data include the input and output parameters of the simulations, which were presented in the co-submitted article [1]. KW - Kupplung KW - Feuchteleitung KW - Heat transport KW - Moisture transport KW - Living wall KW - Wärmeübertragung KW - coupling KW - ENVI-Met KW - Delphin KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220106-45483 UR - https://www.sciencedirect.com/science/article/pii/S2352340921010167?via%3Dihub VL - 2022 IS - volume 40, article 107741 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dokhanchi, Najmeh Sadat A1 - Arnold, Jörg A1 - Vogel, Albert A1 - Völker, Conrad T1 - Measurement of indoor air temperature distribution using acoustic travel-time tomography: Optimization of transducers location and sound-ray coverage of the room JF - Measurement N2 - Acoustic travel-time TOMography (ATOM) allows the measurement and reconstruction of air temperature distributions. Due to limiting factors, such as the challenge of travel-time estimation of the early reflections in the room impulse response, which heavily depends on the position of transducers inside the measurement area, ATOM is applied mainly outdoors. To apply ATOM in buildings, this paper presents a numerical solution to optimize the positions of transducers. This optimization avoids reflection overlaps, leading to distinguishable travel-times in the impulse response reflectogram. To increase the accuracy of the measured temperature within tomographic voxels, an additional function is employed to the proposed numerical method to minimize the number of sound-path-free voxels, ensuring the best sound-ray coverage of the room. Subsequently, an experimental set-up has been performed to verify the proposed numerical method. The results indicate the positive impact of the optimal positions of transducers on the distribution of ATOM-temperatures. KW - Bauphysik KW - Bauklimatik KW - Akustische Laufzeit-Tomographie Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220524-46473 UR - https://www.sciencedirect.com/science/article/abs/pii/S0263224120304723?via%3Dihub VL - 2020 IS - Volume 164, article 107934 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Völker, Conrad A1 - Mämpel, Silvio A1 - Kornadt, Oliver T1 - Measuring the human body’s micro‐climate using a thermal manikin JF - Indoor Air N2 - The human body is surrounded by a micro‐climate which results from its convective release of heat. In this study, the air temperature and flow velocity of this micro‐climate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the micro‐climate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the micro‐climate shape strongly depends not only on the body segment, but also on boundary conditions: the higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the air flow in the micro‐climate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient. KW - Raumklima KW - Mikroklima KW - Wärmeübertragung KW - Strömungsmechanik KW - thermal manikin KW - climate chamber KW - micro climate KW - heat transfer coefficient KW - CFD KW - thermography Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181025-38153 UR - https://onlinelibrary.wiley.com/doi/abs/10.1111/ina.12112 N1 - This is the peer reviewed version of the following article: "Measuring the human body’s micro‐climate using a thermal manikin", which has been published in final form at https://doi.org/10.1111/ina.12112. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. IS - 24, 6 SP - 567 EP - 579 ER - TY - JOUR A1 - Salandin, Andrea A1 - Arnold, Jörg A1 - Kornadt, Oliver T1 - Noise in an intensive care unit JF - The Journal of the Acoustical Society of America N2 - Patients and staff in hospitals are exposed to a complex sound environment with rather high noise levels. In intensive care units, the main noise sources are hospital staff on duty and medical equipment, which generates both operating noise and acoustic alarms. Although noise in most cases is produced during activities for the purpose of saving life, noise can induce significant changes in the depth and quality of sleep and negatively affect health in general. Results of a survey of hospital staff are presented as well as measurements in two German hospital wards: a standard two-bed room and a special Intermediate Care Unit (IMC-Unit), each in a different Intensive Care Unit (ICU). Sound pressure data were collected over a 48 hour period and converted into different levels (LAFeq, LAFmax, LAFmin, LAF 5%), as well as a rating level LAr, which is used to take tonality and impulsiveness into account. An analysis of the survey and the measured data, together with a comparison of thresholds of national and international regulations and standards describe the acoustic situation and its likely noise effects on staff and patients. KW - Lärm KW - Messung KW - Akustik KW - Intensivstation KW - Arbeitsplatz KW - noise KW - intensive care unit KW - acoustical measurement KW - Lärm KW - Intensivstation Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170713-32649 UR - http://dx.doi.org/10.1121/1.3655884 N1 - Copyright 2011 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America. The following article appeared in The Journal of the Acoustical Society of America 130, 3754 (2011) and may be found at http://dx.doi.org/10.1121/1.3655884. VL - 2011 IS - 130 (6) SP - 3754 EP - 3760 ER - TY - JOUR A1 - Völker, Conrad A1 - Beckmann, Julia A1 - Koehlmann, Sandra A1 - Kornadt, Oliver T1 - Occupant requirements in residential buildings – an empirical study and a theoretical model JF - Advances in Building Energy Research N2 - Occupant needs with regard to residential buildings are not well known due to a lack of representative scientific studies. To improve the lack of data, a large scale study was carried out using a Post Occupancy Evaluation of 1,416 building occupants. Several criteria describing the needs of occupants were evaluated with regard to their subjective level of relevance. Additionally, we investigated the degree to which deficiencies subjectively exist, and the degree to which occupants were able to accept them. From the data obtained, a hierarchy of criteria was created. It was found that building occupants ranked the physiological needs of air quality and thermal comfort the highest. Health hazards such as mould and contaminated building materials were unacceptable for occupants, while other deficiencies were more likely to be tolerated. Occupant satisfaction was also investigated. We found that most occupants can be classified as satisfied, although some differences do exist between different populations. To explain the relationship between the constructs of what we call relevance, acceptance, deficiency and satisfaction, we then created an explanatory model. Using correlation and regression analysis, the validity of the model was then confirmed by applying the collected data. The results of the study are both relevant in shaping further research and in providing guidance on how to maximize tenant satisfaction in real estate management. KW - Post Occupancy Evaluation KW - Gebäude KW - Benutzung KW - occupant requirements KW - occupant satisfaction KW - residential buildings KW - housing KW - questionnaire Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181015-38137 UR - https://www.tandfonline.com/doi/abs/10.1080/17512549.2012.749808 N1 - This is an Accepted Manuscript of an article published by Taylor & Francis in Advances in Building Energy Research on 29/01/2013, available online: https://www.tandfonline.com/doi/abs/10.1080/17512549.2012.749808. IS - 7 (1) SP - 35 EP - 50 ER - TY - JOUR A1 - Alsaad, Hayder A1 - Völker, Conrad T1 - Performance assessment of a ductless personalized ventilation system using a validated CFD model JF - Journal of Building Performance Simulation N2 - The aim of this study is twofold: to validate a computational fluid dynamics (CFD) model, and then to use the validated model to evaluate the performance of a ductless personalized ventilation (DPV) system. To validate the numerical model, a series of measurements was conducted in a climate chamber equipped with a thermal manikin. Various turbulence models, settings, and options were tested; simulation results were compared to the measured data to determine the turbulence model and solver settings that achieve the best agreement between the measured and simulated values. Subsequently, the validated CFD model was then used to evaluate the thermal environment and indoor air quality in a room equipped with a DPV system combined with displacement ventilation. Results from the numerical model were then used to quantify thermal sensation and comfort using the UC Berkeley thermal comfort model. KW - Ventilation KW - Validierung KW - Strömungsmechanik KW - Raumklima KW - personalized ventilation KW - validation KW - computational fluid dynamics KW - thermal comfort KW - indoor air quality Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190218-38500 UR - https://www.tandfonline.com/doi/full/10.1080/19401493.2018.1431806 N1 - Copyright 2018 Taylor & Francis Group and the International Building Performance Simulation Association (IBPSA). This article may be downloaded for personal use only. Any other use requires prior permission of the authors and Taylor & Francis Group. This is an Accepted Manuscript of an article published by Taylor & Francis in the Journal of Building Performance Simulation 11 (6), 689–704 (2018) and may be found at https://doi.org/10.1080/19401493.2018.1431806 VL - 2018 IS - 11, Heft 6 SP - 689 EP - 704 ER - TY - JOUR A1 - Alsaad, Hayder A1 - Völker, Conrad T1 - Performance evaluation of ductless personalized ventilation in comparison with desk fans using numerical simulations JF - Indoor Air N2 - The performance of ductless personalized ventilation (DPV) was compared to the performance of a typical desk fan since they are both stand-alone systems that allow the users to personalize their indoor environment. The two systems were evaluated using a validated computational fluid dynamics (CFD) model of an office room occupied by two users. To investigate the impact of DPV and the fan on the inhaled air quality, two types of contamination sources were modelled in the domain: an active source and a passive source. Additionally, the influence of the compared systems on thermal comfort was assessed using the coupling of CFD with the comfort model developed by the University of California, Berkeley (UCB model). Results indicated that DPV performed generally better than the desk fan. It provided better thermal comfort and showed a superior performance in removing the exhaled contaminants. However, the desk fan performed better in removing the contaminants emitted from a passive source near the floor level. This indicates that the performance of DPV and desk fans depends highly on the location of the contamination source. Moreover, the simulations showed that both systems increased the spread of exhaled contamination when used by the source occupant. KW - Behaglichkeit KW - Raumklima KW - Strömungsmechanik KW - Fluid KW - computational fluid dynamics KW - desk fan KW - ductless personalized ventilation KW - IAQ KW - thermal comfort Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200422-41407 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/ina.12672 VL - 2020 PB - John Wiley & Sons Ltd ER - TY - JOUR A1 - Gena, Amayu Wakoya A1 - Völker, Conrad A1 - Settles, Gary T1 - Qualitative and quantitative schlieren optical measurement of the human thermal plume JF - Indoor Air N2 - A new large‐field, high‐sensitivity, single‐mirror coincident schlieren optical instrument has been installed at the Bauhaus‐Universität Weimar for the purpose of indoor air research. Its performance is assessed by the non‐intrusive measurement of the thermal plume of a heated manikin. The schlieren system produces excellent qualitative images of the manikin's thermal plume and also quantitative data, especially schlieren velocimetry of the plume's velocity field that is derived from the digital cross‐correlation analysis of a large time sequence of schlieren images. The quantitative results are compared with thermistor and hot‐wire anemometer data obtained at discrete points in the plume. Good agreement is obtained, once the differences between path‐averaged schlieren data and planar anemometry data are reconciled. KW - Raumklima KW - Behaglichkeit KW - Digital image correlation KW - human thermal plume KW - schlieren imaging KW - schlieren velocimetry KW - thermal comfort KW - Schlierenspiegel Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200709-41936 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/ina.12674 VL - 2020 IS - volume 30, issue 4 SP - 757 EP - 766 PB - John Wiley & Sons ER - TY - JOUR A1 - Alsaad, Hayder A1 - Völker, Conrad T1 - Qualitative evaluation of the flow supplied by personalized ventilation using schlieren imaging and thermography JF - Building and Environment N2 - Personalized ventilation (PV) is a mean of delivering conditioned outdoor air into the breathing zone of the occupants. This study aims to qualitatively investigate the personalized flows using two methods of visualization: (1) schlieren imaging using a large schlieren mirror and (2) thermography using an infrared camera. While the schlieren imaging was used to render the velocity and mass transport of the supplied flow, thermography was implemented to visualize the air temperature distribution induced by the PV. Both studies were conducted using a thermal manikin to simulate an occupant facing a PV outlet. As a reference, the flow supplied by an axial fan and a cased axial fan was visualized with the schlieren system as well and compared to the flow supplied by PV. Schlieren visualization results indicate that the steady, low-turbulence flow supplied by PV was able to penetrate the thermal convective boundary layer encasing the manikin's body, providing clean air for inhalation. Contrarily, the axial fan diffused the supplied air over a large target area with high turbulence intensity; it only disturbed the convective boundary layer rather than destroying it. The cased fan supplied a flow with a reduced target area which allowed supplying more air into the breathing zone compared to the fan. The results of thermography visualization showed that the supplied cool air from PV penetrated the corona-shaped thermal boundary layer. Furthermore, the supplied air cooled the surface temperature of the face, which indicates the large impact of PV on local thermal sensation and comfort. KW - Bildverarbeitung KW - Photothermische Methode KW - Visualisierung KW - Belüftung KW - Lüftungsanlage KW - Schlieren imaging KW - Thermography KW - Visualization KW - Personalized ventilation KW - Axial fan Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20211008-45117 UR - https://www.sciencedirect.com/science/article/abs/pii/S0360132319306602?via%3Dihub N1 - This is the accepted manuscript of the article published by Elsevier in Building and Environment 167 (2020) 106450, which can be found at https://doi.org/10.1016/j.buildenv.2019.106450. VL - 2020 IS - Volume 167, article 106450 PB - Elsevier CY - New York ER - TY - JOUR A1 - Völker, Conrad A1 - Alsaad, Hayder T1 - Simulating the human body's microclimate using automatic coupling of CFD and an advanced thermoregulation model JF - Indoor Air N2 - This study aims to develop an approach to couple a computational fluid dynamics (CFD) solver to the University of California, Berkeley (UCB) thermal comfort model to accurately evaluate thermal comfort. The coupling was made using an iterative JavaScript to automatically transfer data for each individual segment of the human body back and forth between the CFD solver and the UCB model until reaching convergence defined by a stopping criterion. The location from which data are transferred to the UCB model was determined using a new approach based on the temperature difference between subsequent points on the temperature profile curve in the vicinity of the body surface. This approach was used because the microclimate surrounding the human body differs in thickness depending on the body segment and the surrounding environment. To accurately simulate the thermal environment, the numerical model was validated beforehand using experimental data collected in a climate chamber equipped with a thermal manikin. Furthermore, an example of the practical implementations of this coupling is reported in this paper through radiant floor cooling simulation cases, in which overall and local thermal sensation and comfort were investigated using the coupled UCB model. KW - Numerische Strömungssimulation KW - Mikroklima KW - Wärmeübergangszahl KW - Wärmeempfindung KW - computational fluid dynamics KW - microclimate KW - UCB model KW - heat transfer coefficient KW - thermal sensation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190218-38517 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/ina.12451 N1 - This is the peer reviewed version of the article published in Indoor Air 28 (3), 415-425 (2018) and may be found in final form at https://doi.org/10.1111/ina.12451. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Copyright 2018 John Wiley & Sons. This article may be downloaded for personal use only. Any other use requires prior permission of the authors and John Wiley & Sons. VL - 2018 IS - 28, Heft 3 SP - 415 EP - 425 ER - TY - JOUR A1 - Völker, Conrad A1 - Kornadt, Oliver A1 - Ostry, Milan T1 - Temperature reduction due to the application of phase change materials JF - Energy and Buildings N2 - Overheating is a major problem in many modern buildings due to the utilization of lightweight constructions with low heat storing capacity. A possible answer to this problem is the emplacement of phase change materials (PCM), thereby increasing the thermal mass of a building. These materials change their state of aggregation within a defined temperature range. Useful PCM for buildings show a phase transition from solid to liquid and vice versa. The thermal mass of the materials is increased by the latent heat. A modified gypsum plaster and a salt mixture were chosen as two materials for the study of their impact on room temperature reduction. For realistic investigations, test rooms were erected where measurements were carried out under different conditions such as temporary air change, alternate internal heat gains or clouding. The experimental data was finally reproduced by dint of a mathematical model. KW - Raumklima KW - Paraffin KW - Phasenumwandlung KW - Gebäude KW - Überhitzung KW - summer overheating in buildings KW - phase change materials KW - PCM KW - Paraffin KW - salt hydrate KW - numerical simulation KW - mathematical model KW - heat storage Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181025-38166 UR - https://www.sciencedirect.com/science/article/pii/S0378778807002034 N1 - The following article appeared in the journal Energy and Buildings 40 (5) 2008, 937‐944 and may be found at https://doi.org/10.1016/j.enbuild.2007.07.008. IS - 40, 5 SP - 937 EP - 944 ER - TY - JOUR A1 - Alsaad, Hayder A1 - Hartmann, Maria A1 - Voelker, Conrad T1 - The effect of a living wall system designated for greywater treatment on the hygrothermal performance of the facade JF - Energy and Buildings N2 - Besides their multiple known benefits regarding urban microclimate, living walls can be used as decentralized stand-alone systems to treat greywater locally at the buildings. While this offers numerous environmental advantages, it can have a considerable impact on the hygrothermal performance of the facade as such systems involve bringing large quantities of water onto the facade. As it is difficult to represent complex entities such as plants in the typical simulation tools used for heat and moisture transport, this study suggests a new approach to tackle this challenge by coupling two tools: ENVI-Met and Delphin. ENVI-Met was used to simulate the impact of the plants to determine the local environmental parameters at the living wall. Delphin, on the other hand, was used to conduct the hygrothermal simulations using the local parameters calculated by ENVI-Met. Four wall constructions were investigated in this study: an uninsulated brick wall, a precast concrete plate, a sandy limestone wall, and a double-shell wall. The results showed that the living wall improved the U-value, the exterior surface temperature, and the heat flux through the wall. Moreover, the living wall did not increase the risk of moisture in the wall during winter and eliminated the risk of condensation. KW - Feuchteleitung KW - Diffusionswärme KW - Heat transport KW - Moisture transport KW - Living wall KW - Delphin KW - ENVI-Met Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20240116-65299 UR - https://www.sciencedirect.com/science/article/pii/S0378778821009956 VL - 2022 IS - volume 255, article 111711 ER - TY - JOUR A1 - Becher, Lia A1 - Gena, Amayu Wakoya A1 - Alsaad, Hayder A1 - Richter, Bernhard A1 - Spahn, Claudia A1 - Völker, Conrad T1 - The spread of breathing air from wind instruments and singers using schlieren techniques JF - Indoor Air N2 - The spread of breathing air when playing wind instruments and singing was investigated and visualized using two methods: (1) schlieren imaging with a schlieren mirror and (2) background-oriented schlieren (BOS). These methods visualize airflow by visualizing density gradients in transparent media. The playing of professional woodwind and brass instrument players, as well as professional classical trained singers were investigated to estimate the spread distances of the breathing air. For a better comparison and consistent measurement series, a single high note, a single low note, and an extract of a musical piece were investigated. Additionally, anemometry was used to determine the velocity of the spreading breathing air and the extent to which it was quantifiable. The results showed that the ejected airflow from the examined instruments and singers did not exceed a spreading range of 1.2 m into the room. However, differences in the various instruments have to be considered to assess properly the spread of the breathing air. The findings discussed below help to estimate the risk of cross-infection for wind instrument players and singers and to develop efficacious safety precautions, which is essential during critical health periods such as the current COVID-19 pandemic. KW - Covid-19 KW - Pandemie KW - Blasinstrument KW - Gesang KW - Schlierenmethode KW - airborne infection KW - background-oriented schlieren KW - schlieren imaging Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220209-45817 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/ina.12869 VL - 2021 IS - volume 31, issue 6 SP - 1798 EP - 1814 PB - Wiley Blackwell CY - Oxford ER - TY - JOUR A1 - Alsaad, Hayder A1 - Schälte, Gereon A1 - Schneeweiß, Mario A1 - Becher, Lia A1 - Pollack, Moritz A1 - Gena, Amayu Wakoya A1 - Schweiker, Marcel A1 - Hartmann, Maria A1 - Voelker, Conrad A1 - Rossaint, Rolf A1 - Irrgang, Matthias T1 - The Spread of Exhaled Air and Aerosols during Physical Exercise JF - Journal of Clinical Medicine N2 - Physical exercise demonstrates a special case of aerosol emission due to its associated elevated breathing rate. This can lead to a faster spread of airborne viruses and respiratory diseases. Therefore, this study investigates cross-infection risk during training. Twelve human subjects exercised on a cycle ergometer under three mask scenarios: no mask, surgical mask, and FFP2 mask. The emitted aerosols were measured in a grey room with a measurement setup equipped with an optical particle sensor. The spread of expired air was qualitatively and quantitatively assessed using schlieren imaging. Moreover, user satisfaction surveys were conducted to evaluate the comfort of wearing face masks during training. The results indicated that both surgical and FFP2 masks significantly reduced particles emission with a reduction efficiency of 87.1% and 91.3% of all particle sizes, respectively. However, compared to surgical masks, FFP2 masks provided a nearly tenfold greater reduction of the particle size range with long residence time in the air (0.3–0.5 μm). Furthermore, the investigated masks reduced exhalation spreading distances to less than 0.15 m and 0.1 m in the case of the surgical mask and FFP2 mask, respectively. User satisfaction solely differed with respect to perceived dyspnea between no mask and FFP2 mask conditions. KW - Sport KW - Training KW - Fahrradergometer KW - sport KW - training KW - cycle ergometer KW - schlieren imaging KW - particles concentration KW - OA-Publikationsfonds2023 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230208-49262 UR - https://www.mdpi.com/2077-0383/12/4/1300 VL - 2023 IS - Volume 12, issue 4, article 1300 PB - Basel CY - MDPI ER - TY - JOUR A1 - Benz, Alexander A1 - Taraben, Jakob A1 - Lichtenheld, Thomas A1 - Morgenthal, Guido A1 - Völker, Conrad T1 - Thermisch-energetische Gebäudesimulation auf Basis eines Bauwerksinformationsmodells JF - Bauphysik N2 - Für eine Abschätzung des Heizwärmebedarfs von Gebäuden und Quartieren können thermisch-energetische Simulationen eingesetzt werden. Grundlage dieser Simulationen sind geometrische und physikalische Gebäudemodelle. Die Erstellung des geometrischen Modells erfolgt in der Regel auf Basis von Bauplänen oder Vor-Ort-Begehungen, was mit einem großen Recherche- und Modellierungsaufwand verbunden ist. Spätere bauliche Veränderungen des Gebäudes müssen häufig manuell in das Modell eingearbeitet werden, was den Arbeitsaufwand zusätzlich erhöht. Das physikalische Modell stellt die Menge an Parametern und Randbedingungen dar, welche durch Materialeigenschaften, Lage und Umgebungs-einflüsse gegeben sind. Die Verknüpfung beider Modelle wird innerhalb der entsprechenden Simulations-software realisiert und ist meist nicht in andere Softwareprodukte überführbar. Mithilfe des Building Information Modeling (BIM) können Simulationsdaten sowohl konsistent gespeichert als auch über Schnittstellen mit entsprechenden Anwendungen ausgetauscht werden. Hierfür wird eine Methode vorgestellt, die thermisch-energetische Simulationen auf Basis des standardisierten Übergabe-formats Industry Foundation Classes (IFC) inklusive anschließender Auswertungen ermöglicht. Dabei werden geometrische und physikalische Parameter direkt aus einem über den gesamten Lebenszyklus aktuellen Gebäudemodell extrahiert und an die Simulation übergeben. Dies beschleunigt den Simulations-prozess hinsichtlich der Gebäudemodellierung und nach späteren baulichen Veränderungen. Die erarbeite-te Methode beruht hierbei auf einfachen Modellierungskonventionen bei der Erstellung des Bauwerksinformationsmodells und stellt eine vollständige Übertragbarkeit der Eingangs- und Ausgangswerte sicher. Thermal building simulation based on BIM-models. Thermal energetic simulations are used for the estimation of the heating demand of buildings and districts. These simulations are based on building models containing geometrical and physical information. The creation of geometrical models is usually based on existing construction plans or in situ assessments which demand a comparatively big effort of investigation and modeling. Alterations, which are later applied to the structure, request manual changes of the related model, which increases the effort additionally. The physical model represents the total amount of parameters and boundary conditions that are influenced by material properties, location and environmental influences on the building. The link between both models is realized within the correspondent simulation soft-ware and is usually not transferable to other software products. By Applying Building Information Modeling (BIM) simulation data is stored consistently and an exchange to other software is enabled. Therefore, a method which allows a thermal energetic simulation based on the exchange format Industry Foundation Classes (IFC) including an evaluation is presented. All geometrical and physical information are extracted directly from the building model that is kept up-to-date during its life cycle and transferred to the simulation. This accelerates the simulation process regarding the geometrical modeling and adjustments after later changes of the building. The developed method is based on simple conventions for the creation of the building model and ensures a complete transfer of all simulation data. KW - Building Information Modeling KW - Energiebedarf KW - Gebäudehülle KW - Schnittstelle KW - Simulation KW - BIM KW - Gebäudesimulation KW - IFC-basierte Gebäudesimulation KW - thermische Gebäudehülle KW - building simulation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181221-38354 N1 - Copyright 2018 Ernst & Sohn. Dieser Artikel kann für den persönlichen Gebrauch heruntergeladen werden. Andere Verwendungen bedürfen der vorherigen Zustimmung der Autoren und des Verlags Ernst & Sohn. Der folgende Artikel erschien in der Bauphysik 40 (2), 2018 und kann unter folgendem Link abgerufen werden. https://www.ernst-und-sohn.de/app/artikelrecherche/artikel.php?lang=de&ID=38470&utm_source=eus&utm_medium=artikel-db&utm_campaign=Bp_2018_2 IS - 40, Heft 2 SP - 61 EP - 67 ER - TY - JOUR A1 - Benz, Alexander A1 - Taraben, Jakob A1 - Lichtenheld, Thomas A1 - Morgenthal, Guido A1 - Völker, Conrad T1 - Thermisch-energetische Gebäudesimulation auf Basis eines Bauwerksinformationsmodells JF - Bauphysik N2 - Für eine Abschätzung des Heizwärmebedarfs von Gebäuden und Quartieren können thermisch-energetische Simulationen eingesetzt werden. Grundlage dieser Simulationen sind geometrische und physikalische Gebäudemodelle. Die Erstellung des geometrischen Modells erfolgt in der Regel auf Basis von Bauplänen oder Vor-Ort-Begehungen, was mit einem großen Recherche- und Modellierungsaufwand verbunden ist. Spätere bauliche Veränderungen des Gebäudes müssen häufig manuell in das Modell eingearbeitet werden, was den Arbeitsaufwand zusätzlich erhöht. Das physikalische Modell stellt die Menge an Parametern und Randbedingungen dar, welche durch Materialeigenschaften, Lage und Umgebungs-einflüsse gegeben sind. Die Verknüpfung beider Modelle wird innerhalb der entsprechenden Simulations-software realisiert und ist meist nicht in andere Softwareprodukte überführbar. Mithilfe des Building Information Modeling (BIM) können Simulationsdaten sowohl konsistent gespeichert als auch über Schnittstellen mit entsprechenden Anwendungen ausgetauscht werden. Hierfür wird eine Methode vorgestellt, die thermisch-energetische Simulationen auf Basis des standardisierten Übergabe-formats Industry Foundation Classes (IFC) inklusive anschließender Auswertungen ermöglicht. Dabei werden geometrische und physikalische Parameter direkt aus einem über den gesamten Lebenszyklus aktuellen Gebäudemodell extrahiert und an die Simulation übergeben. Dies beschleunigt den Simulations-prozess hinsichtlich der Gebäudemodellierung und nach späteren baulichen Veränderungen. Die erarbeite-te Methode beruht hierbei auf einfachen Modellierungskonventionen bei der Erstellung des Bauwerksinformationsmodells und stellt eine vollständige Übertragbarkeit der Eingangs- und Ausgangswerte sicher. Thermal building simulation based on BIM-models. Thermal energetic simulations are used for the estimation of the heating demand of buildings and districts. These simulations are based on building models containing geometrical and physical information. The creation of geometrical models is usually based on existing construction plans or in situ assessments which demand a comparatively big effort of investigation and modeling. Alterations, which are later applied to the structure, request manual changes of the related model, which increases the effort additionally. The physical model represents the total amount of parameters and boundary conditions that are influenced by material properties, location and environmental influences on the building. The link between both models is realized within the correspondent simulation soft-ware and is usually not transferable to other software products. By Applying Building Information Modeling (BIM) simulation data is stored consistently and an exchange to other software is enabled. Therefore, a method which allows a thermal energetic simulation based on the exchange format Industry Foundation Classes (IFC) including an evaluation is presented. All geometrical and physical information are extracted directly from the building model that is kept up-to-date during its life cycle and transferred to the simulation. This accelerates the simulation process regarding the geometrical modeling and adjustments after later changes of the building. The developed method is based on simple conventions for the creation of the building model and ensures a complete transfer of all simulation data. KW - Gebäudehülle KW - Energiebedarf KW - Simulation KW - Schnittstelle KW - Building Information Modeling KW - Gebäudesimulation KW - BIM KW - IFC-basierte Gebäudesimulation KW - thermische Gebäudehülle KW - building simulation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181102-38190 UR - https://e-pub.uni-weimar.de/opus4/frontdoor/index/index/docId/3835 N1 - Copyright 2018 Ernst & Sohn. Dieser Artikel kann für den persönlichen Gebrauch heruntergeladen werden. Andere Verwendungen bedürfen der vorherigen Zustimmung der Autoren und des Verlags Ernst & Sohn. Der folgende Artikel erschien in der Bauphysik 40 (2), 2018 und kann unter folgendem Link abgerufen werden. https://www.ernst-und-sohn.de/app/artikelrecherche/artikel.php?lang=de&ID=38470&utm_source=eus&utm_medium=artikel-db&utm_campaign=Bp_2018_2. IS - 40, Heft 2 SP - 61 EP - 67 ER -