TY - JOUR A1 - Nguyen-Tuan, Long A1 - Lahmer, Tom A1 - Datcheva, Maria A1 - Stoimenova, Eugenia A1 - Schanz, Tom T1 - A novel parameter identification approach for buffer elements involving complex coupled thermo-hydro-mechanical analyses JF - Computers and Geotechnics N2 - A novel parameter identification approach for buffer elements involving complex coupled thermo-hydro-mechanical analyses KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 SP - 23 EP - 32 ER - TY - JOUR A1 - Nguyen-Tuan, Long A1 - Lahmer, Tom A1 - Datcheva, Maria A1 - Schanz, Tom T1 - Global and local sensitivity analyses for coupled thermo‐hydro‐mechanical problems JF - International Journal for Numerical and Analytical Methods in Geomechanics N2 - Global and local sensitivity analyses for coupled thermo‐hydro‐mechanical problems KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 ER - TY - JOUR A1 - Knabe, Tina A1 - Datcheva, Maria A1 - Lahmer, Tom A1 - Cotecchia, F. A1 - Schanz, Tom T1 - Identification of constitutive parameters of soil using an optimization strategy and statistical analysis JF - Computers and Geotechnics N2 - Identification of constitutive parameters of soil using an optimization strategy and statistical analysis KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2013 SP - 143 EP - 157 ER - TY - JOUR A1 - Schanz, Tom A1 - Tripathy, Snehasis T1 - Swelling pressure of a divalent-rich bentonite: Diffuse double-layer theory revisited JF - Water Resources Research N2 - Physicochemical forces are responsible for the swelling pressure development in saturated bentonites. In this paper, the swelling pressures of several compacted bentonite specimens for a range of dry density of 1.10–1.73 Mg/m3 were measured experimentally. The clay used was a divalent-rich Ca-Mg-bentonite with 12% exchangeable Na+ ions. The theoretical swelling pressure–dry density relationship for the bentonite was determined from the Gouy-Chapman diffuse double-layer theory. A comparison of experimental and theoretical results showed that the experimental swelling pressures are either smaller or greater than their theoretical counterparts within different dry density ranges. It is shown that for dry density of the clay less than about 1.55 Mg/m3, a possible dissociation of ions from the surface of the clay platelets contributed to the diffuse double-layer repulsion. At higher dry densities, the adsorptive forces due to surface and ion hydration dominated the swelling pressures of the clay. A comparison of the modified diffuse double-layer theory equations proposed in the literature to determine the swelling pressures of compacted bentonites and the experimental results for the clay in this study showed that the agreement between the calculated and experimental swelling pressure results is very good for dry densities less than 1.55 Mg/m3, whereas at higher dry densities the use of the equations was found to be limited. KW - Bentonit KW - Boden KW - Ton KW - Geochemical modeling; Soils; High-pressure behavior; bentonite; clays; expansive clays Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170425-31592 ER -