TY - JOUR A1 - Alsaad, Hayder A1 - Völker, Conrad T1 - Performance assessment of a ductless personalized ventilation system using a validated CFD model JF - Journal of Building Performance Simulation N2 - The aim of this study is twofold: to validate a computational fluid dynamics (CFD) model, and then to use the validated model to evaluate the performance of a ductless personalized ventilation (DPV) system. To validate the numerical model, a series of measurements was conducted in a climate chamber equipped with a thermal manikin. Various turbulence models, settings, and options were tested; simulation results were compared to the measured data to determine the turbulence model and solver settings that achieve the best agreement between the measured and simulated values. Subsequently, the validated CFD model was then used to evaluate the thermal environment and indoor air quality in a room equipped with a DPV system combined with displacement ventilation. Results from the numerical model were then used to quantify thermal sensation and comfort using the UC Berkeley thermal comfort model. KW - Ventilation KW - Validierung KW - Strömungsmechanik KW - Raumklima KW - personalized ventilation KW - validation KW - computational fluid dynamics KW - thermal comfort KW - indoor air quality Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190218-38500 UR - https://www.tandfonline.com/doi/full/10.1080/19401493.2018.1431806 N1 - Copyright 2018 Taylor & Francis Group and the International Building Performance Simulation Association (IBPSA). This article may be downloaded for personal use only. Any other use requires prior permission of the authors and Taylor & Francis Group. This is an Accepted Manuscript of an article published by Taylor & Francis in the Journal of Building Performance Simulation 11 (6), 689–704 (2018) and may be found at https://doi.org/10.1080/19401493.2018.1431806 VL - 2018 IS - 11, Heft 6 SP - 689 EP - 704 ER - TY - JOUR A1 - Alsaad, Hayder A1 - Völker, Conrad T1 - Could the ductless personalized ventilation be an alternative to the regular ducted personalized ventilation? JF - Indoor Air N2 - This study investigates the performance of two systems: personalized ventilation (PV) and ductless personalized ventilation (DPV). Even though the literature indicates a compelling performance of PV, it is not often used in practice due to its impracticality. Therefore, the present study assesses the possibility of replacing the inflexible PV with DPV in office rooms equipped with displacement ventilation (DV) in the summer season. Numerical simulations were utilized to evaluate the inhaled concentration of pollutants when PV and DPV are used. The systems were compared in a simulated office with two occupants: a susceptible occupant and a source occupant. Three types of pollution were simulated: exhaled infectious air, dermally emitted contamination, and room contamination from a passive source. Results indicated that PV improved the inhaled air quality regardless of the location of the pollution source; a higher PV supply flow rate positively impacted the inhaled air quality. Contrarily, the performance of DPV was highly sensitive to the source location and the personalized flow rate. A higher DPV flow rate tends to decrease the inhaled air quality due to increased mixing of pollutants in the room. Moreover, both systems achieved better results when the personalized system of the source occupant was switched off. KW - Strömungsmechanik KW - Kontamination KW - Belüftung KW - Luftqualität KW - computational fluid dynamics KW - cross-contamination KW - ductless personalized ventilation KW - indoor air quality KW - tracer gas Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200805-42072 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/ina.12720 VL - 2020 PB - John Wiley & Sons Ltd ER -