TY - THES A1 - Willenbacher, Susanne T1 - Untersuchungen zu räumlichen Benutzerschnittstellen am Beispiel der Präsentation von Stadtinformationen T1 - Examinations to spatial user-interfaces on the example of city-informationd N2 - Schwerpunkt der Arbeit ist die Auseinandersetzung mit den Möglichkeiten und Grenzen der Desktop-VR als neue Generation der Benutzerschnittstellen. Besondere Bedeutung bei dieser Art des Interface-Designs kommt den Metaphern zu. Ein großer Teil der Arbeit beschäftigt sich mit der Klassifikation, der Auswahl und dem Einsatz passender Metaphern unter Berücksichtigung der in der Applikation darzustellenden Informationsinhalte. Aus der Kombination dieser beiden Merkmale (Art der Metapher, Informationsinhalt) ergeben sich vier verschiedene virtuelle Umgebungen, deren Eigenschaften und Besonderheiten konkretisiert und an Beispielen aus dem Anwendungsgebiet der Stadtinformationssysteme vorgestellt werden. Als praktischer Untersuchungsgegenstand dient das Anwendungsgebiet der Stadtinformationssysteme. Die theoretisch basierten Erkenntnisse und Schlußfolgerungen werden durch statistische Untersuchungen, in Form von Fragebögen zu Stadtinformationssystemen, überprüft und konkretisiert. N2 - Topic of the paper is a discussion about the possibilities and boundaries of a new age in interface-design - the age of Desktop-VR interfaces. The important basis of this approach of interface-design is the use of a metaphor. One part of this paper deals with the classification of metaphors and gives a guideline which kind of metaphor fits to which kind of information / application. If you combine this two features (kind of metaphor, kind of information) you can get four different kinds of virtual environments. The features and characteristics of this four special virtual environments will be presented. Examples from the field of city-information-systems will be discussed. The field of city-information-system-application will used for a practical examine. Therefore a statistical evaluation of questionnaire about city-information-systems was realised. KW - Virtuelle Realität KW - Geoinformationssystem KW - Graphische Benutzeroberfläche KW - Benutzerorientierung KW - Metapher KW - Stadt KW - Benutzerschnittstellen KW - Stadtinformationssystem KW - Desktop-VR-Interface KW - VRML KW - City KW - Userinterface-Design KW - Metaphors KW - VRML KW - Desktop-VR-Interface Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20040218-363 ER - TY - THES A1 - Regenbrecht, Holger T1 - Faktoren für Präsenz in virtueller Architektur T1 - Factors for the sense of presence within virtual architecture N2 - Die Dissertation adressiert das Gebiet der Entwicklung von (räumlicher) Präsenz in computer-generierten virtuellen Umgebungen im speziellen und virtueller Architektur im besonderen. Der erste Teil motiviert die Arbeit, führt in die Terminologie ein und beschreibt die grundlegenden Prinzipien der virtuellen Realität (VR) und von VR-basierter Architektur. Der Schwerpunkt liegt auf sogenannten immersiven VR-Systemen. Der folgende Teil erarbeitet den theoretischen Hintergrund der Entwickling von Präsenz unter besonderer Beachtung philosophischer und kognitiver Ansätze. Ein eigenes Kapitel widmet sich der Klassifikation von Präsenz-Faktoren unter dem Gesichtspunkt der praktischen Gestaltung virtueller Architektur. Letztendlich werden verschiedene empirische Untersuchungen vorgestellt, die die entwickelten Ansaetze evaluieren und beschreiben. Die Ergebnisse werden im Kontext des architektonischen Gestaltens diskutiert. N2 - The dissertation addresses the domain of the development of the sense of presense within computer-generated virtual environments in general and within virtual architecture in particular. The first part provides motivation and terminology as well as the description of the basic principles of the generation of virtual worlds and virtual reality based architecture. The focus is set on so called immersive virtual reality systems. The following part offers a theoretical background on the sense of presence with special respect to philosophical and cognitive approaches. Considering practical aspects in developing virtual environments and architecture a classification framework for contributing factors is given in a seperate chapter. Finally several empirical investigations serve as a proof of the approaches developed and will be discussed in the context of architectural design. KW - Architektur KW - Virtuelle Realität KW - Immersion KW - Präsenz KW - Gestaltung KW - Raum KW - architecture KW - virtual reality KW - immersion KW - sense of presence KW - design KW - space Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20040216-359 ER - TY - THES A1 - Jakob, Patrick T1 - Die Bedeutung von klassischen Elementen in virtueller Architektur - Untersucht am Beispiel der Wand T1 - The relevance of classical elements in virtual architecture - examined by the example of the wall N2 - Die Dissertation exploriert und evaluiert die Definition einer Entsprechung der architektonischen Kategorie der Wand für virtuelle Architekturen. Es wird der Frage nachgegangen, inwieweit eine architektonische Strukturierung in der virtuellen Architektur fortzuführen ist, um Handlungs- und Kommunikationsstrukturen zu sichern. Der erste Teil motiviert die Arbeit und vermittelt die Grundlagen und Termini, die in einem direkten Zusammenhang mit der virtuellen Architektur verwendet werden. Der folgende Teil konzentriert sich ausschließlich auf die reale Architektur. Ausgehend vom Element der Wand wird, in einer analytischen und architekturtheoretischen Betrachtung, ein Modell von Raumkategorien entwickelt, welches im Hinblick auf die virtuelle Architektur von besonderer Bedeutung ist. Die aus der Analyse gewonnen Erkenntnisse in Form von Raumkategorien werden im dritten Teil aus der realen in die virtuelle Architektur übertragen. Das folgende Kapitel beschreibt drei Experimente, die Fra-gen, Hypothesen und Ansätze aus den vorangegangenen Kapiteln empirisch evaluieren. Im abschließenden Kapitel werden die Erkenntnisse der experimentellen Untersuchung im Kontext des architektonischen Gestaltens von virtuellen Architekturen diskutiert. N2 - The dissertation explores and evaluates the definition of the architectural category of a wall in virtual architecture. The question to what extent architectural structure can be followed in virtual architecture so that action and communication structures can be transposed is dealt with. The first part motivates the paper and defines the basis and terminology which are used in a direct context with virtual architecture. The following part focuses exclusively on real architec-ture; it reviews the element of the wall under an analytic and theoretical view-point. Moreover, a model of category of space is developed, which is important for virtual architecture. The knowledge gathered from the analysis, in terms of space categories, is then transposed in the third part from real into virtual architecture. The pursuant chapter describes three experiments in which questions, hypothesis and starting points from the previous chapter are empirically evaluated. In the final chapter the results of the experimental investigation are discussed in the context of architectural design. KW - Virtuelle Realität KW - Architekturtheorie KW - Navigation KW - Orientierung KW - Raumwahrnehmung KW - Architektur KW - Theorie des Raumes KW - Experimente KW - architecture KW - virtual reality KW - theory of space KW - experiments KW - theory of architecture KW - navigation KW - orientation KW - perception of space Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20050708-6849 ER - TY - THES A1 - Blickling, Arno T1 - Spezifikation des Bau-Solls durch interaktive Modellierung auf virtuellen Baustellen T1 - Job Description by Interactive Production Modeling on Virtual Construction Sites N2 - Heutige Methoden zur Soll-Spezifikation von Bauleistungen (Kostenermittlung und zeitliche Ablaufplanung) gehen von einer abstrahierten und vereinfachten Betrachtung der Zusammenhänge bei Bauprojekten aus. Leistungsverzeichnisse, Kostenermittlungen und Bauzeitpläne orientieren sich nur indirekt an der Geometrie des Bauwerks und der Baustelle. Die dabei verwendeten Medien wie Papier, 2D-Dateien, digitale Leistungsbeschreibungen oder 3D-Darstellungen lassen die Suche nach Informationen auf der Baustelle zu einem zeitaufwändigen und in Anbetracht existierender Medientechnologien ineffizienten Prozess werden. Interaktive virtuelle Umgebungen erlauben die Auflösung starrer Zusammenhänge durch interaktive Eingriffe des Anwenders und visualisieren komplexe bauproduktionstechnische Vorgänge. Das Konzept der visuellen interaktiven Simulation der Bauproduktion sieht vor, die Soll-Spezifikation anhand eines interaktiven 3D-Modells zu entwickeln, um räumliche Veränderungen und parallele Prozesse auf der virtuellen Baustelle im Rahmen der Entscheidungsfindung zum Bauablauf besser berücksichtigen zu können. Verlangt man einen hohen Grad an Interaktivität mit dem 3D-Modell, dann bieten sich Computerspieltechnologien sehr gut zu Verifikationszwecken an. Die visuelle interaktive Simulation der Bauproduktion ist damit als eine 3D-modellbasierte Methode der Prozessmodellierung zu verstehen, die Entscheidungen als Input benötigt und die Kostenermittlung sowie die zeitliche Ablaufplanung als Output liefert. N2 - Current methods for the description of construction works presume a high abstraction level to simplify the constraints between single processes of a process model. The determination of costs together with the specification of a time schedule form the primary components (to-be-built) of this description. Cost estimations, bills of quantities and bar charts are not directly connected to the geometry of the product nore of the construction site. The used media like paper, 2D-files or – in best case scenarios – 3D pictures lead us to a time-consuming information retrieval on the site. Considering modern media technologies these processes are inefficient and demand for alternative scenarios based on 3D-models. In this work a concept for interaction with a virtual construction site is presented. The user can interact with objects on the site in such a way that he initiates the execution of single process steps in the complex production model of the site. The approach to visual interactive simulation (VIS) leads to a to-be-built specification of construction works (determination of costs and 4D-model). Thus spatial changes and parallel processes can be considered when modeling the construction sequence on the virtuel site. If one requirement of the solution is a high level of interactivity between the user and the model then game development engines are a suitable tool for the verification of the approach. This work integrates tendering issues with cost estimation and 4D-modeling in order to develop an interactive method for the simulation of construction works. This simulation approach is based on the 3D-model of the site and requires human-based decisions as an input while delivering costs and a 4D-model on a high level of detail as an output. T3 - Schriften der Professur Baubetrieb und Bauverfahren - 13 KW - Virtuelle Realität KW - Bauablauf KW - interaktiv KW - Stuttgart / Sonderforschungsbereich Rechnergestützte Modellierung und Simulation zur Analyse KW - Bausoll KW - interactive KW - simulation KW - job description KW - sequence KW - cost estimation KW - Kalkulation Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20061105-8311 ER - TY - THES A1 - Springer, Jan P. T1 - Multi-Frame Rate Rendering N2 - Multi-frame rate rendering is a parallel rendering technique that renders interactive parts of a scene on one graphics card while the rest of the scene is rendered asynchronously on a second graphics card. The resulting color and depth images of both render processes are composited, by optical superposition or digital composition, and displayed. The results of a user study confirm that multi-frame rate rendering can significantly improve the interaction performance. Multi-frame rate rendering is naturally implemented on a graphics cluster. With the recent availability of multiple graphics cards in standalone systems the method can also be implemented on a single computer system where memory bandwidth is much higher compared to off-the-shelf networking technology. This decreases overall latency and further improves interactivity. Multi-frame rate rendering was also investigated on a single graphics processor by interleaving the rendering streams for the interactive elements and the rest of the scene. This approach enables the use of multi-frame rate rendering on low-end graphics systems such as laptops, mobile phones, and PDAs. Advanced multi-frame rate rendering techniques reduce the limitations of the basic approach. The interactive manipulation of light sources and their parameters affects the entire scene. A multi-GPU deferred shading method is presented that splits the rendering task into a rasterization and lighting pass and assigns the passes to the appropriate image generators such that light manipulations at high frame rates become possible. A parallel volume rendering technique allows the manipulation of objects inside a translucent volume at high frame rates. This approach is useful for example in medical applications, where small probes need to be positioned inside a computed-tomography image. Due to the asynchronous nature of multi-frame rate rendering artifacts may occur during migration of objects from the slow to the fast graphics card, and vice versa. Proper state management allows to almost completely avoid these artifacts. Multi-frame rate rendering significantly improves the interactive manipulation of objects and lighting effects. This leads to a considerable increase of the size for 3D scenes that can be manipulated compared to conventional methods. N2 - Multi-Frame Rate Rendering ist eine parallele Rendertechnik, die interaktive Teile einer Szene auf einer separaten Graphikkarte berechnet. Die Abbildung des Rests der Szene erfolgt asynchron auf einer anderen Graphikkarte. Die resultierenden Farb- und Tiefenbilder beider Darstellungsprozesse werden mittels optischer Überlagerung oder digitaler Komposition kombiniert und angezeigt. Die Ergebnisse einer Nutzerstudie zeigen, daß Multi-Frame Rate Rendering die Interaktion für große Szenen deutlich beschleunigt. Multi-Frame Rate Rendering ist üblicherweise auf einem Graphikcluster zu implementieren. Mit der Verfügbarkeit mehrerer Graphikkarten für Einzelsysteme kann Multi-Frame Rate Rendering auch für diese realisiert werden. Dies ist von Vorteil, da die Speicherbandbreite um ein Vielfaches höher ist als mit üblichen Netzwerktechnologien. Dadurch verringern sich Latenzen, was zu verbesserter Interaktivität führt. Multi-Frame Rate Rendering wurde auch auf Systemen mit einer Graphikkarte untersucht. Die Bildberechnung für den Rest der Szene muss dazu in kleine Portionen aufgeteilt werden. Die Darstellung erfolgt dann alternierend zu den interaktiven Elementen über mehrere Bilder verteilt. Dieser Ansatz erlaubt die Benutzung von Multi-Frame Rate Rendering auf einfachen Graphiksystemen wie Laptops, Mobiltelefonen and PDAs. Fortgeschrittene Multi-Frame Rate Rendering Techniken erweitern die Anwendbarkeit des Ansatzes erheblich. Die interaktive Manipulation von Lichtquellen beeinflußt die ganze Szene. Um diese Art der Interaktion zu unterstützen, wurde eine Multi-GPU Deferred Shading Methode entwickelt. Der Darstellungsvorgang wird dazu in einen Rasterisierungs- und Beleuchtungsschritt zerlegt, die parallel auf den entsprechenden Grafikkarten erfolgen können. Dadurch kann die Beleuchtung mit hohen Bildwiederholraten unabhängig von der geometrischen Komplexität der Szene erfolgen. Außerdem wurde eine parallele Darstellungstechnik für die interaktive Manipulation von Objekten in hochaufgelösten Volumendaten entwickelt. Dadurch lassen sich zum Beispiel virtuelle Instrumente in hochqualitativ dargestellten Computertomographieaufnahmen interaktiv positionieren. Aufgrund der inhärenten Asynchronität der beiden Darstellungsprozesse des Multi-Frame Rate Rendering Ansatzes können Artifakte während der Objektmigration zwischen den Graphikkarten auftreten. Eine intelligente Zustandsverwaltung in Kombination mit Prediktionstechniken kann diese Artifakte fast gänzlich verhindern, so dass Benutzer diese im allgemeinen nicht bemerken. Multi-Frame Rate Rendering beschleunigt die interaktive Manipulation von Objekten und Beleuchtungseffekten deutlich. Dadurch können deutlich umfangreichere virtuelle Szenarien bearbeitet werden als mit konventionellen Methoden. T2 - Multi-Frame Rate Rendering KW - Virtuelle Realität KW - Multi-Frame Rate Rendering KW - Multi-Frame Rate Composition KW - Interaction Fidelity KW - Visual Quality KW - Parallel Rendering Methods Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20081127-14395 ER - TY - THES A1 - Salzmann, Holger T1 - Collaboration in Co-located Automotive Applications N2 - Virtual reality systems offer substantial potential in supporting decision processes based purely on computer-based representations and simulations. The automotive industry is a prime application domain for such technology, since almost all product parts are available as three-dimensional models. The consideration of ergonomic aspects during assembly tasks, the evaluation of humanmachine interfaces in the car interior, design decision meetings as well as customer presentations serve as but a few examples, wherein the benefit of virtual reality technology is obvious. All these tasks require the involvement of a group of people with different expertises. However, current stereoscopic display systems only provide correct 3D-images for a single user, while other users see a more or less distorted virtual model. This is a major reason why these systems still face limited acceptance in the automotive industry. They need to be operated by experts, who have an advanced understanding of the particular interaction techniques and are aware of the limitations and shortcomings of virtual reality technology. The central idea of this thesis is to investigate the utility of stereoscopic multi-user systems for various stages of the car development process. Such systems provide multiple users with individual and perspectively correct stereoscopic images, which are key features and serve as the premise for the appropriate support of collaborative group processes. The focus of the research is on questions related to various aspects of collaboration in multi-viewer systems such as verbal communication, deictic reference, embodiments and collaborative interaction techniques. The results of this endeavor provide scientific evidence that multi-viewer systems improve the usability of VR-applications for various automotive scenarios, wherein co-located group discussions are necessary. The thesis identifies and discusses the requirements for these scenarios as well as the limitations of applying multi-viewer technology in this context. A particularly important gesture in real-world group discussions is referencing an object by pointing with the hand and the accuracy which can be expected in VR is made evident. A novel two-user seating buck is introduced for the evaluation of ergonomics in a car interior and the requirements on avatar representations for users sitting in a car are identified. Collaborative assembly tasks require high precision. The novel concept of a two-user prop significantly increases the quality of such a simulation in a virtual environment and allows ergonomists to study the strain on workers during an assembly sequence. These findings contribute toward an increased acceptance of VR-technology for collaborative development meetings in the automotive industry and other domains. N2 - Virtual-Reality-Systeme sind ein innovatives Instrument, um mit Hilfe computerbasierter Simulationen Entscheidungsprozesse zu unterstützen. Insbesondere in der Automobilbranche spielt diese Technologie eine wichtige Rolle, da heutzutage nahezu alle Fahrzeugteile in 3D konstruiert werden. Im Entwicklungsbereich der Automobilindustrie werden Visualisierungssysteme darüber hinaus bei der Untersuchung ergonomischer Aspekte von Montagevorgängen, bei der Bewertung der Mensch-Maschine-Schnittstelle im Fahrzeuginterieur, bei Designentscheidungen sowie bei Kundenpräsentationen eingesetzt. Diese Entscheidungsrunden bedürfen der Einbindung mehrerer Experten verschiedener Fachbereiche. Derzeit verfügbare stereoskopische Visualisierungssysteme ermöglichen aber nur einem Nutzer eine korrekte Stereosicht, während sich für die anderen Teilnehmer das 3D-Modell verzerrt darstellt. Dieser Nachteil ist ein wesentlicher Grund dafür, dass derartige Systeme bisher nur begrenzt im Automobilbereich anwendbar sind. Der Fokus dieser Dissertation liegt auf der Untersuchung der Anwendbarkeit stereoskopischer Mehrbenutzer-Systeme in verschiedenen Stadien des automobilen Entwicklungsprozesses. Derartige Systeme ermöglichen mehreren Nutzern gleichzeitig eine korrekte Stereosicht, was eine wesentliche Voraussetzung für die Zusammenarbeit in einer Gruppe darstellt. Die zentralen Forschungsfragen beziehen sich dabei auf die Anforderungen von kooperativen Entscheidungsprozessen sowie den daraus resultierenden Aspekten der Interaktion wie verbale Kommunikation, Gesten sowie virtuelle Menschmodelle und Interaktionstechniken zwischen den Nutzern. Die Arbeit belegt, dass stereoskopische Mehrbenutzersysteme die Anwendbarkeit virtueller Techniken im Automobilbereich entscheidend verbessern, da sie eine natürliche Kommunikation zwischen den Nutzern fördern. So ist die Unterstützung natürlicher Gesten beispielsweise ein wichtiger Faktor und es wird dargelegt, welche Genauigkeit beim Zeigen mit der realen Hand auf virtuelle Objekte erwartet werden kann. Darüber hinaus werden Anforderungen an virtuelle Menschmodelle anhand einer Zweibenutzer-Sitzkiste identifiziert und untersucht. Diese Form der Simulation, bei der die Nutzer nebeneinander in einem Fahrzeugmodell sitzen, dient vor allem der Bewertung von Mensch-Maschine-Schnittstellen im Fahrzeuginterieur. Des Weiteren wird das neue Konzept eines Mehrbenutzer-Werkzeugs in die Arbeit mit einbezogen, da hier verdeutlicht wird wie die Simulation von Montagevorgängen in virtuellen Umgebungen mit passivem haptischem Feedback zu ergonomischen Verbesserungen entsprechender Arbeitsvorgänge in der Realität beitragen kann. Diese Konzepte veranschaulichen wie VR-Systeme zur Unterstützung kollaborativer Prozesse in der Automobilbranche und darüber hinaus eingesetzt werden können. T2 - Zusammenarbeit in virtuellen Gruppenszenarien in der automobilen Entwicklung KW - Virtuelle Realität KW - Immersion KW - Simulation KW - Computergraphik KW - Virtual Reality KW - Computer Graphics KW - Interaction Techniques KW - Collaboration Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20100712-15102 ER - TY - THES A1 - Moehring, Mathias T1 - Realistic Interaction with Virtual Objects within Arm's Reach N2 - The automotive industry requires realistic virtual reality applications more than other domains to increase the efficiency of product development. Currently, the visual quality of virtual invironments resembles reality, but interaction within these environments is usually far from what is known in everyday life. Several realistic research approaches exist, however they are still not all-encompassing enough to be usable in industrial processes. This thesis realizes lifelike direct multi-hand and multi-finger interaction with arbitrary objects, and proposes algorithmic and technical improvements that also approach lifelike usability. In addition, the thesis proposes methods to measure the effectiveness and usability of such interaction techniques as well as discusses different types of grasping feedback that support the user during interaction. Realistic and reliable interaction is reached through the combination of robust grasping heuristics and plausible pseudophysical object reactions. The easy-to-compute grasping rules use the objects’ surface normals, and mimic human grasping behavior. The novel concept of Normal Proxies increases grasping stability and diminishes challenges induced by adverse normals. The intricate act of picking-up thin and tiny objects remains challenging for some users. These cases are further supported by the consideration of finger pinches, which are measured with a specialized finger tracking device. With regard to typical object constraints, realistic object motion is geometrically calculated as a plausible reaction on user input. The resulting direct finger-based interaction technique enables realistic and intuitive manipulation of arbitrary objects. The thesis proposes two methods that prove and compare effectiveness and usability. An expert review indicates that experienced users quickly familiarize themselves with the technique. A quantitative and qualitative user study shows that direct finger-based interaction is preferred over indirect interaction in the context of functional car assessments. While controller-based interaction is more robust, the direct finger-based interaction provides greater realism, and becomes nearly as reliable when the pinch-sensitive mechanism is used. At present, the haptic channel is not used in industrial virtual reality applications. That is why it can be used for grasping feedback which improves the users’ understanding of the grasping situation. This thesis realizes a novel pressure-based tactile feedback at the fingertips. As an alternative, vibro-tactile feedback at the same location is realized as well as visual feedback by the coloring of grasp-involved finger segments. The feedback approaches are also compared within the user study, which reveals that grasping feedback is a requirement to judge grasp status and that tactile feedback improves interaction independent of the used display system. The considerably stronger vibrational tactile feedback can quickly become annoying during interaction. The interaction improvements and hardware enhancements make it possible to interact with virtual objects in a realistic and reliable manner. By addressing realism and reliability, this thesis paves the way for the virtual evaluation of human-object interaction, which is necessary for a broader application of virtual environments in the automotive industry and other domains. N2 - Stärker als andere Branchen benötigt die Automobilindustrie realistische Virtual Reality Anwendungen für eine effiziente Produktentwicklung. Während sich die visuelle Qualität virtueller Darstellungen bereits der Realität angenähert hat, ist die Interaktion mit virtuellen Umgebungen noch weit vom täglichen Erleben der Menschen entfernt. Einige Forschungsansätze haben sich mit realistischer Interaktion befasst, gehen aber nicht weit genug, um in industriellen Prozessen eingesetzt zu werden. Diese Arbeit realisiert eine lebensnahe mehrhändige und fingerbasierte Interaktion mit beliebigen Objekten. Dabei ermöglichen algorithmische und technische Verbesserungen eine realitätsnahe Usability. Außerdem werden Methoden für die Evaluation dieser Interaktionstechnik vorgestellt und benutzerunterstützende Greiffeedbackarten diskutiert. Die verlässliche und gleichzeitig realistische Interaktion wird durch die Kombination von robusten Greifheuristiken und pseudophysikalischen Objektreaktionen erreicht. Die das menschliche Greifverhalten nachbildenden Greifregeln basieren auf den Oberflächennormalen der Objekte. Die Reduktion negativer Einflüsse verfälschter Normalen und eine höhere Griffstabilität werden durch das neuartige Konzept der Normal Proxies erreicht. Dennoch bleibt für manche Nutzer das Aufnehmen von dünnen und kleinen Objekten problematisch. Diese Fälle werden zusätzlich durch die Einbeziehung von Fingerberührungen unterstützt, die mit einem speziellen Fingertracking Gerät erfasst werden. Plausible Objektreaktionen auf Benutzereingaben werden unter Berücksichtigung typischer Objekteinschränkungen geometrisch berechnet. Die Arbeit schlägt zwei Methoden zur Evaluierung der fingerbasierten Interaktion vor. Ein Expertenreview zeigt, dass sich erfahrene Benutzer sehr schnell in die Technik einfinden. In einer Benutzerstudie wird nachgewiesen, dass fingerbasierte Interaktion im hier untersuchten Kontext vor indirekter Interaktion mit einem Eingabegerät bevorzugt wird. Während letztere robuster zu handhaben ist, stellt die fingerbasierte Interaktion einen deutlich höheren Realismus bereit und erreicht mit den vorgeschlagenen Verbesserungen eine vergleichbare Verlässlichkeit. Um Greifsituationen transparent zu gestalten, realisiert diese Arbeit ein neuartiges druckbasiertes taktiles Feedback an den Fingerspitzen. Alternativ wird ein vibrotaktiles Feedback am gleichen Ort realisiert und visuelles Feedback durch die Einfärbung der griffbeteiligten Fingersegmente umgesetzt. Die verschiedenen Feedbackansätze werden in der Benutzerstudie verglichen. Dabei wird Greiffeedback als Voraussetzung identifiziert, um den Greifzustand zu beurteilen. Taktiles Feedback verbessert dabei die Interaktion unabhängig vom eingesetzten Display. Das merklich stärkere Vibrationsfeedback kann während der Interaktion störend wirken. Die vorgestellten Interaktionsverbesserungen und Hardwareerweiterungen ermöglichen es, mit virtuellen Objekten auf realistische und zuverlässige Art zu interagieren. Indem die Arbeit Realismus und Verlässlichkeit gleichzeitig adressiert, bereitet sie den Boden für die virtuelle Untersuchung von Mensch-Objekt Interaktionen und ermöglicht so einen breiteren Einsatz virtueller Techniken in der Automobilindustrie und in anderen Bereichen. KW - Virtuelle Realität KW - Interaktion KW - Mensch-Maschine-Interaktion KW - Medieninformatik Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130301-18592 ER - TY - THES A1 - Beck, Stephan T1 - Immersive Telepresence Systems and Technologies N2 - Modern immersive telepresence systems enable people at different locations to meet in virtual environments using realistic three-dimensional representations of their bodies. For the realization of such a three-dimensional version of a video conferencing system, each user is continuously recorded in 3D. These 3D recordings are exchanged over the network between remote sites. At each site, the remote recordings of the users, referred to as 3D video avatars, are seamlessly integrated into a shared virtual scenery and displayed in stereoscopic 3D for each user from his or her perspective. This thesis reports on algorithmic and technical contributions to modern immersive telepresence systems and presents the design, implementation and evaluation of the first immersive group-to-group telepresence system in which each user is represented as realistic life-size 3D video avatar. The system enabled two remote user groups to meet and collaborate in a consistent shared virtual environment. The system relied on novel methods for the precise calibration and registration of color- and depth- sensors (RGBD) into the coordinate system of the application as well as an advanced distributed processing pipeline that reconstructs realistic 3D video avatars in real-time. During the course of this thesis, the calibration of 3D capturing systems was greatly improved. While the first development focused on precisely calibrating individual RGBD-sensors, the second stage presents a new method for calibrating and registering multiple color and depth sensors at a very high precision throughout a large 3D capturing volume. This method was further refined by a novel automatic optimization process that significantly speeds up the manual operation and yields similarly high accuracy. A core benefit of the new calibration method is its high runtime efficiency by directly mapping from raw depth sensor measurements into an application coordinate system and to the coordinates of its associated color sensor. As a result, the calibration method is an efficient solution in terms of precision and applicability in virtual reality and immersive telepresence applications. In addition to the core contributions, the results of two case studies which address 3D reconstruction and data streaming lead to the final conclusion of this thesis and to directions of future work in the rapidly advancing field of immersive telepresence research. N2 - In modernen 3D-Telepresence-Systemen werden die Nutzer realistisch dreidimensional repräsentiert und können sich in einer gemeinsamen virtuellen Umgebung treffen. Da sich die Nutzer gegenseitig realistisch sehen können, werden Limitierungen von herkömmlichen zweidimensionalen Videokonferenzsystemen überwunden und neue Möglichkeiten für die Kollaboration geschaffen. Für die Realisierung eines immersiven Telepresence-Systems wird jeder Nutzer kontinuierlich in 3D aufgenommen und als sogenannter 3D-Video-Avatar rekonstruiert. Die 3D-Video-Avatare werden über eine Netzwerkverbindung zwischen den entfernten Orten ausgetauscht, auf jeder Seite in eine gemeinsame virtuelle Szene integriert und für jeden Nutzer perspektivisch korrekt dreidimensional angezeigt. Diese Arbeit trägt algorithmisch und technisch zur aktuellen Forschung im Bereich 3D-Telepresence bei und präsentiert das Design, die Implementierung und die Evaluation eines neuen immersiven Telepresence-Systems. Benutzergruppen können sich dadurch zum ersten Mal von unterschiedlichen Orten in einer konsistenten gemeinsamen virtuellen Umgebung treffen und als realistische lebensgroße 3D-Video-Avatare sehen. Das System basiert auf neu entwickelten Methoden, welche die präzise Kalibrierung und Registrierung von mehreren Farb- und Tiefenkameras in ein gemeinsames Koordinatensystem ermöglichen, sowie auf einer neu entwickelten verteilten Prozesskette, welche die realistische Rekonstruktion von 3D-Video-Avataren in Echtzeit ermöglicht. Im Rahmen dieser Arbeit wurde die Kalibrierung von 3D-Aufnahmesystemen, die auf mehreren Farb- und Tiefenkameras basieren, deutlich verbessert. Eine erste Entwicklung konzentrierte sich auf die präzise Kalibrierung und Registrierung ein- zelner Tiefenkameras. Eine wesentliche Neuentwicklung ermöglicht es, mehrere Farb- und Tiefenkameras mit sehr hoher Genauigkeit innerhalb eines großen 3D-Aufnahmebereichs volumetrisch zu kalibrieren und in ein übergeordnetes Koordinatensystem zu registrieren. Im Laufe der Arbeit wurde die notwendige Nutzerinteraktion durch ein automatisches Optimierungsverfahren deutlich verringert, was die Kalibrierung von 3D-Aufnahmesystemen innerhalb weniger Minuten mit hoher Genauigkeit ermöglicht. Ein wesentlicher Vorteil dieser neuen volumetrischen Kalibrierungsmethode besteht darin, dass gemessene Tiefenwerte direkt in das Koordinatensystem der Anwendung und in das Koordinatensystem der korrespondierenden Farbkamera abgebildet werden. Insbesondere sind während der Anwendungslaufzeit keine Berechnungen zur Linsenentzerrung nötig, da diese bereits implizit durch die volumetrische Kalibrierung ausgeglichen sind. Das in dieser Arbeit entwickelte immersive Telepresence-System hebt sich von verwandten Arbeiten ab. Der durch das System geschaffene virtuelle Begegnungsraum ermöglicht natürliche Interaktionsformen, wie zum Beispiel Gestik oder Mimik, und bietet gleichzeitig etablierte Interaktionstechniken der Virtuellen Realität, welche die gemeinsame Exploration und Analyse von 3D-Inhalten unterstützen. Die in dieser Arbeit neu entwickelte Kalibrierungsmethode stellt eine effiziente Lösung hinsichtlich Genauigkeit und Flexibilität für Virtual-Reality- und moderne 3D-Telepresence-Anwendungen dar. Zusätzlich zu den vorgestellten Entwicklungen tragen die Ergebnisse zweier Fallstudien im Bereich 3D-Rekonstruktion und Netzwerkübertragungzu dieser Arbeit bei und unterstützen Vorschläge und Ausblicke für zukünftige Entwicklungen im fortschreitenden Gebiet der 3D-Telepresence-Forschung. KW - Virtuelle Realität KW - Telepräsenz KW - Mensch-Maschine-Kommunikation KW - Tiefensensor KW - Camera Calibration KW - Depth Camera KW - 3D Telepresence KW - Virtual Reality Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190218-38569 ER - TY - THES A1 - Kunert, André T1 - 3D Interaction Techniques in Multi-User Virtual Reality : towards scalable templates and implementation patterns for cooperative interfaces N2 - Multi-user projection systems provide a coherent 3D interaction space for multiple co-located users that facilitates mutual awareness, full-body interaction, and the coordination of activities. The users perceive the shared scene from their respective viewpoints and can directly interact with the 3D content. This thesis reports on novel interaction patterns for collaborative 3D interaction for local and distributed user groups based on such multi-user projection environments. A particular focus of our developments lies in the provision of multiple independent interaction territories in our workspaces and their tight integration into collaborative workflows. The motivation for such multi-focus workspaces is grounded in research on social cooperation patterns, specifically in the requirement for supporting phases of loose and tight collaboration and the emergence of dedicated orking territories for private usage and public exchange. We realized independent interaction territories in the form of handheld virtual viewing windows and multiple co-located hardware displays in a joint workspace. They provide independent views of a shared virtual environment and serve as access points for the exploration and manipulation of the 3D content. Their tight integration into our workspace supports fluent transitions between individual work and joint user engagement. The different affordances of various displays in an exemplary workspace consisting of a large 3D wall, a 3D tabletop, and handheld virtual viewing windows, promote different usage scenarios, for instance for views from an egocentric perspective, miniature scene representations, close-up views, or storage and transfer areas. This work shows that this versatile workspace can make the cooperation of multiple people in joint tasks more effective, e.g. by parallelizing activities, distributing subtasks, and providing mutual support. In order to create, manage, and share virtual viewing windows, this thesis presents the interaction technique of Photoportals, a tangible interface based on the metaphor of digital photography. They serve as configurable viewing territories and enable the individual examination of scene details as well as the immediate sharing of the prepared views. Photoportals are specifically designed to complement other interface facets and provide extended functionality for scene navigation, object manipulation, and for the creation of temporal recordings of activities in the virtual scene. A further objective of this work is the realization of a coherent interaction space for direct 3D input across the independent interaction territories in multi-display setups. This requires the simultaneous consideration of user input in several potential interaction windows as well as configurable disambiguation schemes for the implicit selection of distinct interaction contexts. We generalized the required implementation structures into a high-level software pattern and demonstrated its versatility by means of various multi-context 3D interaction tools. Additionally, this work tackles specific problems related to group navigation in multiuser projection systems. Joint navigation of a collocated group of users can lead to unintentional collisions when passing narrow scene sections. In this context, we suggest various solutions that prevent individual collisions during group navigation and discuss their effect on the perceived integrity of the travel group and the 3D scene. For collaboration scenarios involving distributed user groups, we furthermore explored different configurations for joint and individual travel. Last but not least, this thesis provides detailed information and implementation templates for the realization of the proposed interaction techniques and collaborative workspaces in scenegraph-based VR systems. These contributions to the abstraction of specific interaction patterns, such as group navigation and multi-window interaction, facilitate their reuse in other virtual reality systems and their adaptation to further collaborative scenarios. N2 - Stereoskopische Mehrbenutzer-Projektionssysteme ermöglichen die perspektivisch korrekte Darstellung einer 3D-Szene für mehrere Nutzer. Dadurch erschaffen sie einen kohärenten Interaktionsraum, welcher sowohl die direkte Interaktion mit den 3D-Inhalten als auch die gegenseitige Wahrnehmung von Aktivitäten einzelner Personen und deren Koordination unterstützt. Diese Arbeit berichtet über neuartige Interaktionstechniken für kollaborative 3D Arbeitsplätze für lokale und verteilte Benutzergruppen auf der Basis solcher Mehrbenutzer-Projektionsdisplays. Ein besonderer Schwerpunkt unserer Entwicklungen liegt in der Bereitstellung mehrerer unabhängiger Interaktionsterritorien in einem gemeinsamen Arbeitsraum und deren enger Integration in kollaborative Arbeitsprozesse. Wissenschaftliche Untersuchungen über soziale Kooperationsmuster haben gezeigt, dass kollaborative Arbeitsprozesse sowohl auf Phasen enger Zusammenarbeit als auch auf individuellen Aktivitäten beruhen. Damit einhergehend findet üblicherweise eine räumliche Aufteilung in gemeinschaftlich oder privat genutzte Arbeitsbereiche statt. In unseren kollaborativen Arbeitsumgebungen haben wir solche unabhängigen, flexibel nutzbaren Interaktionsterritorien zum einen durch mobile virtuelle Interaktionsfenster und zum anderen durch mehrere festinstallierte Mehrbenutzerdisplays (3D-Projektionswand und 3D-Projektionstisch) realisiert. Jedes dieser Interaktionsfenster ermöglicht unabhängige Ansichten auf die virtuelle Szene, welche für die Exploration und Manipulation der 3D-Inhalte genutzt werden können. Durch ihre Einbindung in eine zusammenhängende Arbeitsumgebung unterstützen sie fließende Übergänge zwischen individueller und gemeinschaftlicher Arbeit. Die unterschiedlichen Charakteristika der integrierten Displays begünstigen unterschiedliche Anwendungsszenarien. Szenenansichten in Originalgröße können z.B. auf der großen 3D-Projektionswand ideal dargestellt werden, während der 3D Tisch sich eher für Miniaturansichten auf die Szene eignet. Die portablen virtuellen Interaktionsfenster können auf vielfältige Weise genutzt werden, z.B. für Detailansichten, als Bildergalerie und zum Austausch von Perspektiven zwischen den beiden festinstallierten Displays. Im Rahmen diese Arbeit wird gezeigt, dass diese vielseitigen Interaktionsterritorien kollaborative Arbeitsprozesse durch Parallelisierung von Aktivitäten, Aufteilung von Teilaufgaben und Möglichkeiten zur gegenseitigen Unterstützung effektiver gestalten können. Als neuartige Benutzungsschnittstelle für virtuelle Interaktionsfenster stellen wir die Interaktionstechnik der „Fotoportale“ vor. Diese beruht auf den Bedienungsmustern digitaler Fotoapparate und ermöglicht die unkomplizierte Erstellung, Bearbeitung und Weitergabe von separaten Szenenansichten. Fotoportale sind speziell dazu entworfen, alternative Schnittstellen zu anderen Interaktionsaspekten anzubieten. In diesem Kontext bieten sie erweiterte Funktionalitäten zur Szenennavigation, Objektmanipulation und zur Aufzeichnung zeitlicher Abläufe in der virtuellen Szene an. Ein weiteres Ziel dieser Arbeit ist die Realisierung eines kohärenten Interaktionsraums für direkte 3D-Interaktion, der sich über mehrere separate Interaktionsfenster hinweg erstreckt. Dies erfordert die gleichzeitige Berücksichtigung von Benutzereingaben in mehreren Interaktionsfenstern sowie konfigurierbare Auswahlschemata zur impliziten Disambiguierung dieser Interaktionskontexte. Wir haben die dafür erforderlichen Mechanismen verallgemeinert und in ein Software-Pattern überführt. Die Vielseitigkeit dieser Abstraktion wird anhand unterschiedlicher 3D-Interaktionswerkzeuge demonstriert. Darüber hinaus befasst sich diese Arbeit mit spezifischen Problemen im Zusammenhang mit der Gruppennavigation in Mehrbenutzer-Projektionssystemen. Die gemeinschaftliche Navigation der vor der 3D-Projektionswand verteilten Nutzer kann bei der Passage beengter Szenenabschnitte zu unbeabsichtigten Kollisionen führen. In diesem Kontext schlagen wir verschiedene Lösungen vor, die individuelle Kollisionen einzelner Nutzer mit Hindernissen während des Navigationsprozesses verhindern. Die Auswirkungen dieser Lösungsansätze auf die wahrgenommene Integrität der Nutzergruppe beziehungsweise die der 3D Welt werden hierbei ausführlich diskutiert. Für Kollaborationsszenarien mit sich an verschiedenen Orten befindenden Nutzergruppen stellen wir außerdem eine Reihe von Optionen für gemeinsame und unabhängige Navigation vor, die kontinuierlich Informationen zur aktuellen Position der jeweils anderen Gruppe zur Verfügung stellen. Nicht zuletzt liefert diese Arbeit detaillierte Informationen und Implementierungsmuster für die Realisierung der vorgeschlagenen Interaktionstechniken und der kollaborativen Arbeitsräume in Szenengraph-basierten VR Systemen. Diese Beiträge zur Abstraktion spezifischer Interaktionsmuster, wie z.B. Gruppennavigation und Mehrfensterinteraktion, können als Vorlage für deren Reimplementierung in anderen VR-Systemen beziehungsweise für ihre Anpassung auf weitere kollaborative Szenarien dienen. KW - Virtuelle Realität KW - Mensch-Maschine-Kommunikation KW - 3D Interaction Techniques KW - Human-Computer Interaction KW - Multi-User Virtual Reality Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20201204-42962 ER - TY - THES A1 - Weißker, Tim T1 - Group Navigation in Multi-User Virtual Reality N2 - Multi-user virtual reality systems enable collocated as well as distributed users to perform collaborative activities in immersive virtual environments. A common activity in this context is to move from one location to the next as a group to explore the environment together. The simplest solution to realize these multi-user navigation processes is to provide each participant with a technique for individual navigation. However, this approach entails some potentially undesirable consequences such as the execution of a similar navigation sequence by each participant, a regular need for coordination within the group, and, related to this, the risk of losing each other during the navigation process. To overcome these issues, this thesis performs research on group navigation techniques that move group members together through a virtual environment. The presented work was guided by four overarching research questions that address the quality requirements for group navigation techniques, the differences between collocated and distributed settings, the scalability of group navigation, and the suitability of individual and group navigation for various scenarios. This thesis approaches these questions by introducing a general conceptual framework as well as the specification of central requirements for the design of group navigation techniques. The design, implementation, and evaluation of corresponding group navigation techniques demonstrate the applicability of the proposed framework. As a first step, this thesis presents ideas for the extension of the short-range teleportation metaphor, also termed jumping, for multiple users. It derives general quality requirements for the comprehensibility of the group jumping process and introduces a corresponding technique for two collocated users. The results of two user studies indicate that sickness symptoms are not affected by user roles during group jumping and confirm improved planning accuracy for the navigator, increased spatial awareness for the passenger, and reduced cognitive load for both user roles. Next, this thesis explores the design space of group navigation techniques in distributed virtual environments. It presents a conceptual framework to systematize the design decisions for group navigation techniques based on Tuckman's model of small-group development and introduces the idea of virtual formation adjustments as part of the navigation process. A quantitative user study demonstrates that the corresponding extension of Multi-Ray Jumping for distributed dyads leads to more efficient travel sequences and reduced workload. The results of a qualitative expert review confirm these findings and provide further insights regarding the complementarity of individual and group navigation in distributed virtual environments. Then, this thesis investigates the navigation of larger groups of distributed users in the context of guided museum tours and establishes three central requirements for (scalable) group navigation techniques. These should foster the awareness of ongoing navigation activities as well as facilitate the predictability of their consequences for all group members (Comprehensibility), assist the group with avoiding collisions in the virtual environment (Obstacle Avoidance), and support placing the group in a meaningful spatial formation for the joint observation and discussion of objects (View Optimization). The work suggests a new technique to address these requirements and reports on its evaluation in an initial usability study with groups of five to ten (partially simulated) users. The results indicate easy learnability for navigators and high comprehensibility for passengers. Moreover, they also provide valuable insights for the development of group navigation techniques for even larger groups. Finally, this thesis embeds the previous contributions in a comprehensive literature overview and emphasizes the need to study larger, more heterogeneous, and more diverse group compositions including the related social factors that affect group dynamics. In summary, the four major research contributions of this thesis are as follows: - the framing of group navigation as a specific instance of Tuckman's model of small-group development - the derivation of central requirements for effective group navigation techniques beyond common quality factors known from single-user navigation - the introduction of virtual formation adjustments during group navigation and their integration into concrete group navigation techniques - evidence that appropriate pre-travel information and virtual formation adjustments lead to more efficient travel sequences for groups and lower workloads for both navigators and passengers Overall, the research of this thesis confirms that group navigation techniques are a valuable addition to the portfolio of interaction techniques in multi-user virtual reality systems. The conceptual framework, the derived quality requirements, and the development of novel group navigation techniques provide effective guidance for application developers and inform future research in this area. N2 - Multi-User-Virtual-Reality-Systeme ermöglichen es lokalen und räumlich getrennten Benutzer*innen, kollaborative Aktivitäten in einer immersiven virtuellen Umgebung auszuüben. Eine grundlegende Aufgabe in diesem Zusammenhang ist die Navigation von einem Ort zum nächsten als Gruppe, um die Umgebung gemeinsam zu erkunden. Die einfachste Lösung zur Realisierung dieser Mehrbenutzer*innen-Navigationsprozesse besteht darin, jedem*jeder Teilnehmer*in eine Technik zur individuellen Navigation zur Verfügung zu stellen. Dieser Ansatz führt jedoch zu einigen potenziell unerwünschten Begleiterscheinungen, wie zum Beispiel der Ausführung einer ähnlichen Navigationssequenz durch jede*n Teilnehmer*in, einem regelmäßigen Koordinationsbedarf innerhalb der Gruppe und damit verbunden der Gefahr, sich während des Navigationsprozesses zu verlieren. Zur Überwindung dieser Problematiken erforscht die vorliegende Arbeit Gruppennavigationstechniken, die alle Gruppenmitglieder gemeinsam durch eine virtuelle Umgebung bewegen. Die vorgestellten Beiträge wurden von vier übergreifenden Forschungsfragen geleitet, welche sich mit Qualitätsanforderungen an Gruppennavigationstechniken, den Unterschieden zwischen lokaler und räumlich getrennter Teilnahme, der Skalierbarkeit von Gruppennavigation und der Eignung von Einzel- und Gruppennavigationstechniken für verschiedene Szenarien befassen. Die vorliegende Arbeit nähert sich diesen Fragen durch die Einführung eines allgemeinen konzeptionellen Frameworks sowie die Spezifikation zentraler Anforderungen an den Entwurf von Gruppennavigationstechniken. Die Entwicklung, Implementierung und Evaluation entsprechender Gruppennavigationstechniken demonstrieren die Anwendbarkeit des vorgeschlagenen Frameworks. In einem ersten Schritt stellt diese Arbeit Ideen zur Erweiterung der Teleportationsmetapher über kurze Distanzen, auch Jumping genannt, für mehrere Benutzer*innen vor. Sie leitet allgemeine Qualitätsanforderungen zur Verständlichkeit des Gruppen-Jumpings ab und präsentiert eine entsprechende Technik für zwei lokale Benutzer*innen. Die Ergebnisse zweier Benutzungsstudien zeigen keine Einflüsse des aktiven oder passiven Jumpings auf Symptome der Simulatorkrankheit und bestätigen eine erhöhte Planungsgenauigkeit für den*die Navigator*in, ein verbessertes räumliches Verständnis für den*die Passagier*in und eine reduzierte kognitive Belastung für beide Rollen. Danach untersucht diese Arbeit den Gestaltungsraum von Gruppennavigationstechniken in verteilten virtuellen Umgebungen. Basierend auf Tuckmans Modell der Kleingruppenentwicklung stellt sie ein konzeptionelles Framework zur Systematisierung der Designentscheidungen für Gruppennavigationstechniken vor und führt die Idee der virtuellen Formationsanpassungen als Teil des Navigationsprozesses ein. Eine quantitative Benutzungsstudie zeigt, dass eine entsprechende Erweiterung des Multi-Ray Jumpings für räumlich getrennte Dyaden zu effizienteren Navigationsabläufen und geringeren wahrgenommenen Arbeitslasten führt. Die Ergebnisse eines qualitativen Expert-Reviews bestätigen diese Erkenntnisse und liefern weitere Einsichten bezüglich der Komplementarität von Einzel- und Gruppennavigation in verteilten virtuellen Umgebungen. Anschließend untersucht diese Arbeit die Navigation größerer Gruppen räumlich getrennter Benutzer*innen im Kontext von Museumsführungen und stellt drei zentrale Anforderungen für (skalierbare) Gruppennavigationstechniken auf. Diese sollen das Bewusstsein für laufende Navigationsaktivitäten fördern sowie die Vorhersehbarkeit ihrer Konsequenzen für alle Gruppenmitglieder erleichtern (Verständlichkeit), der Gruppe bei der Vermeidung von Kollisionen in der virtuellen Umgebung assistieren (Hindernisvermeidung) und die Platzierung der Gruppe in einer sinnvollen räumlichen Formation für die gemeinsame Betrachtung und Diskussion von Objekten unterstützen (Blickoptimierung). Die Arbeit stellt eine neue Technik zur Adressierung dieser Anforderungen vor, welche in einer initialen Usability-Studie mit Gruppen von fünf bis zehn (teilweise simulierten) Benutzer*innen evaluiert wurde. Die Ergebnisse zeigen eine einfache Erlernbarkeit für den*die Navigator*in und eine hohe Verständlichkeit für Passagier*innen. Darüber hinaus liefern sie wertvolle Erkenntnisse zur Entwicklung von Gruppennavigationstechniken für noch größere Gruppenstärken. Abschließend bettet diese Arbeit die bisherigen Beiträge in einen umfassenden Literaturüberblick ein und betont den Bedarf zukünftiger Forschungsarbeiten zu größeren, heterogeneren und diverseren Gruppenkompositionen. Dies beinhaltet ebenfalls die Betrachtung der damit verbundenen sozialen Faktoren sowie deren Einfluss auf die Gruppendynamik. Zusammengefasst lauten die vier wichtigsten Forschungsbeiträge dieser Arbeit wie folgt: - die Einordnung von Gruppennavigationsprozessen als spezifische Instanz von Tuckmans Modell der Kleingruppenentwicklung - die Ableitung zentraler Anforderungen an effektive Gruppennavigationstechniken zusätzlich zu aus Einzelnavigationskontexten bekannten Qualitätsfaktoren - die Einführung von virtuellen Formationsanpassungen als Teil der Gruppennavigation und deren Integration in konkrete Gruppennavigationstechniken - Nachweise, dass geeignet gewählte Vorschaumechanismen sowie virtuelle Formationsanpassungen zu effizienteren Navigationssequenzen für die Gruppe und geringeren wahrgenommenen Arbeitslasten für Navigator*innen und Passagier*innen führen Insgesamt bestätigen die Ergebnisse dieser Arbeit, dass Gruppennavigationstechniken eine wertvolle Ergänzung zum Portfolio der Interaktionstechniken in Multi-User-Virtual-Reality-Systemen sind. Das konzeptionelle Framework, die abgeleiteten Qualitätsanforderungen und die Entwicklung entsprechender Gruppennavigationstechniken bilden eine relevante Wissensbasis für Anwendungsentwickler*innen und informieren zukünftige Forschung in diesem Gebiet. KW - Virtuelle Realität KW - Mensch-Maschine-Kommunikation KW - Multi-User Virtual Reality KW - Group Navigation KW - Collaborative Virtual Environments KW - Human-Computer Interaction Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20211124-45305 ER -